
Reversible circuit compilation
with space constraints

Martin Roetteler

Quantum Architectures and Computation Group (QuArC)

Microsoft Research

Based on joint work with Matt Amy, Alex Parent, and Krysta M. Svore:

arXiv:1510.00377 arxiv:1603.01635

QPL 2016

Glasgow, June 9, 2016

Microsoft QuArC and StationQ

Quantum programming in
LIQ𝑈𝑖|⟩

• Simulation:

– High enough level language to easily implement large quantum algorithms

– Allow as large a simulation on classical computers as possible

– Support abstraction and visualization to help the user

– Implement as an extensible platform so users can tailor to their own requirements

• Compilation:

– Multi-level analysis of circuits to allow many types of optimization

– Circuit re-writing for specific needs (e.g., different gate sets, noise modeling)

– Compilation into real target architectures

LIQ𝑈𝑖|⟩ goals

A software architecture for quantum computing

The LIQ𝑈𝑖|⟩ platform Wecker and Svore, 2014

• Goal: automatically translate
quantum algorithm to executable
code for a quantum computer

• Increases speed of innovation
• Rapid development of

quantum algorithms
• Efficient testing of

architectural designs
• Flexible for the future

Quantum Algorithms

Quantum Circuits

Simulation
Backend

Hardware
Backend

Programming Language

Optimized Quantum
Circuits

Compilers and Optimizers

6/9/2016 M. Roetteler @ MSR / QuArC 6

• We chose F# as high-level language for quantum algorithms
– F# is also the implementation language

• Optimized simulation of quantum operations
– Parallelized linear algebra package

– Many higher-level optimizations are implemented, such as growing a

complex circuit into a single multi-qubit unitary operation

– A CHP-based stabilizer simulator is included for algorithms that don’t require

full circuit and state vector simulation

• Public release for academic purposes
– Restricted to 23 qubits for circuit simulation

– No software restrictions on the stabilizer simulator

The LIQ𝑈𝑖|⟩ simulation platform
LIQUi|>: A Software Design Architecture and Domain-Specific

Language for Quantum Computing. Dave Wecker, Krysta M. Svore

Languages, compilers, and computer-aided design tools will be essential for

scalable quantum computing, which promises an exponential leap in our

ability to execute complex tasks. LIQUi|> is a modular software architecture

designed to control quantum hardware. It enables easy programming,

compilation, and simulation of quantum algorithms and circuits, and is

independent of a specific quantum architecture. LIQUi|> contains an

embedded, domain-specific language designed for programming quantum

algorithms, with F# as the host language. It also allows the extraction of a

circuit data structure that can be used for optimization, rendering, or

translation. The circuit can also be exported to external hardware and software

environments. Two different simulation environments are available to the user

which allow a trade-off between number of qubits and class of operations.

LIQUi|> has been implemented on a wide range of runtimes as back-ends with

a single user front-end. We describe the significant components of the design

architecture and how to express any given quantum algorithm.

Paper: http://arxiv.org/abs/1402.4467

Software: http://stationq.github.io/Liquid

TFirst coding challenge just ended

2/19/2016 8M. Roetteler @ MSR / QuArC

• Define a function to generate entanglement:

Quantum “Hello World!”

let EPR (qs:Qubits) = H qs; CNOT qs

• The rest of the algorithm:

let teleport (qs:Qubits) =
let qs' = qs.Tail
EPR qs'; CNOT qs; H qs
M qs'; BC X qs'
M qs ; BC Z !!(qs,0,2)

Teleport: running the code

loop N times:
… create 3 qubits
… init the first one to a random state
… print it out
teleport qs
… print out the result

0:0000.0/Initial State: (0.3735-0.2531i)|0>+(-0.4615-0.7639i)|1>
0:0000.0/Final State: (0.3735-0.2531i)|0>+(-0.4615-0.7639i)|1> (bits:10)
0:0000.0/Initial State: (-0.1105+0.3395i)|0>+(0.927-0.1146i)|1>
0:0000.0/Final State: (-0.1105+0.3395i)|0>+(0.927-0.1146i)|1> (bits:11)
0:0000.0/Initial State: (-0.3882-0.2646i)|0>+(-0.8092+0.3528i)|1>
0:0000.0/Final State: (-0.3882-0.2646i)|0>+(-0.8092+0.3528i)|1> (bits:01)
0:0000.0/Initial State: (0.2336+0.4446i)|0>+(-0.8527+0.1435i)|1>
0:0000.0/Final State: (0.2336+0.4446i)|0>+(-0.8527+0.1435i)|1> (bits:10)
0:0000.0/Initial State: (0.9698+0.2302i)|0>+(-0.03692+0.0717i)|1>
0:0000.0/Final State: (0.9698+0.2302i)|0>+(-0.03692+0.0717i)|1> (bits:11)
0:0000.0/Initial State: (-0.334-0.3354i)|0>+(0.315-0.8226i)|1>
0:0000.0/Final State: (-0.334-0.3354i)|0>+(0.315-0.8226i)|1> (bits:01)

More complex circuits

let entangle (qs:Qubits) =
H qs; let q0 = qs.Head
for q in qs.Tail do CNOT[q0;q]
M >< qs

0:0000.0/#### Iter 0 [0.2030]: 0000000000000
0:0000.0/#### Iter 1 [0.1186]: 0000000000000
0:0000.0/#### Iter 2 [0.0895]: 0000000000000
0:0000.0/#### Iter 3 [0.0749]: 0000000000000
0:0000.0/#### Iter 4 [0.0664]: 1111111111111
0:0000.0/#### Iter 5 [0.0597]: 0000000000000
0:0000.0/#### Iter 6 [0.0550]: 1111111111111
0:0000.0/#### Iter 7 [0.0512]: 0000000000000
0:0000.0/#### Iter 8 [0.0484]: 0000000000000
0:0000.0/#### Iter 9 [0.0463]: 0000000000000
0:0000.0/#### Iter 10 [0.0446]: 0000000000000
0:0000.0/#### Iter 11 [0.0432]: 1111111111111
0:0000.0/#### Iter 12 [0.0420]: 0000000000000
0:0000.0/#### Iter 13 [0.0410]: 0000000000000
0:0000.0/#### Iter 14 [0.0402]: 0000000000000
0:0000.0/#### Iter 15 [0.0399]: 0000000000000
0:0000.0/#### Iter 16 [0.0392]: 1111111111111
0:0000.0/#### Iter 17 [0.0387]: 1111111111111
0:0000.0/#### Iter 18 [0.0380]: 0000000000000
0:0000.0/#### Iter 19 [0.0374]: 1111111111111

User defined gates

/// <summary>
/// Controlled NOT gate
/// </summary>
/// <param name="qs"> Use first two qubits for gate</param>
[<LQD>]
let CNOT (qs:Qubits) =

let gate =
Gate.Build("CNOT",fun () ->

new Gate(
Name = "CNOT",
Help = "Controlled NOT",
Mat = CSMat(4,[(0,0,1.,0.);(1,1,1.,0.);

(2,3,1.,0.);(3,2,1.,0.)]),
Draw = "\\ctrl{#1}\\go[#1]\\targ"

))
gate.Run qs

Full teleport circuit in a Steane7 code

QFT' bs // Inverse QFT

X [bMx] // Flip top bit

CNOT [bMx;anc] // Reset Ancilla to |0⟩
X [bMx] // Flip top bit back

QFT bs // QFT back

CCAdd a cbs // Finally get Φ|𝑎 + 𝑏 𝑚𝑜𝑑 𝑁⟩

let op (qs:Qubits) =

CCAdd a cbs // Add a to Φ|𝑏⟩
AddA' N bs // Sub N from Φ|𝑎 + 𝑏⟩
QFT' bs // Inverse QFT of Φ|𝑎 + 𝑏 − 𝑁⟩
CNOT [bMx;anc] // Save top bit in Ancilla

QFT bs // QFT of a+b-N

CAddA N (anc :: bs) // Add back N if negative

CCAdd' a cbs // Subtract a from Φ|𝑎 + 𝑏 𝑚𝑜𝑑 𝑁⟩

Shor’s algorithm component: modular adder

As defined in:

Circuit for Shor’s

algorithm using 2n+3 qubits

– Stéphane Beauregard

Shor’s algorithm: full circuit: 4 bits ≅ 8200 gates

Circuit for Shor’s algorithm using 2n+3 qubits – Stéphane Beauregard

Largest Dave has done:

14 bits (factoring 8189)

14 Million Gates

30 days

Shor’s algorithm: scaling

• If we can guarantee that the qubits we want to operate on are always at the

beginning of the state vector, we can view the operation as:

𝐺2𝑘,2𝑘 ⊗ 𝐼2𝑛−𝑘,2𝑛−𝑘 ×Ψ2𝑛

• However, what we’d really like is to flip the Kronecker product order:

𝐼2𝑛−𝑘,2𝑛−𝑘 ⊗𝐺2𝑘,2𝑘 ×Ψ2𝑛

• This would accomplish :

– 𝐼 ⊗ 𝐺 would become a block diagonal matrix that just has copies of 𝐺 down the diagonal.

This means that you’d never have to actually materialize 𝑈=𝐼 ⊗ 𝐺

– Processing would be highly parallel (and/or distributed) because the matrix is perfectly

partitioned and applies to separate, independent parts of the state vector

LIQ𝑈𝑖|⟩ - Optimizations

Can quantum chemistry be performed on a small quantum

computer: Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B.

Hastings, Matthias Troyer

As quantum computing technology improves and quantum

computers with a small but non-trivial number of N > 100 qubits

appear feasible in the near future the question of possible

applications of small quantum computers gains importance. One

frequently mentioned application is Feynman's original proposal of

simulating quantum systems, and in particular the electronic structure

of molecules and materials. In this paper, we analyze the

computational requirements for one of the standard algorithms to

perform quantum chemistry on a quantum computer. We focus on

the quantum resources required to find the ground state of a

molecule twice as large as what current classical computers can solve

exactly. We find that while such a problem requires about a ten-fold

increase in the number of qubits over current technology, the

required increase in the number of gates that can be coherently

executed is many orders of magnitude larger. This suggests that for

quantum computation to become useful for quantum chemistry

problems, drastic algorithmic improvements will be needed.

http://arxiv.org/abs/1312.1695

Improving Quantum Algorithms for Quantum Chemistry: M. B.

Hastings, D. Wecker, B. Bauer, M. Troyer

We present several improvements to the standard Trotter-Suzuki based

algorithms used in the simulation of quantum chemistry on a quantum

computer. First, we modify how Jordan-Wigner transformations are

implemented to reduce their cost from linear or logarithmic in the

number of orbitals to a constant. Our modification does not require

additional ancilla qubits. Then, we demonstrate how many operations

can be parallelized, leading to a further linear decrease in the parallel

depth of the circuit, at the cost of a small constant factor increase in

number of qubits required. Thirdly, we modify the term order in the

Trotter-Suzuki decomposition, significantly reducing the error at given

Trotter-Suzuki timestep. A final improvement modifies the Hamiltonian

to reduce errors introduced by the non-zero Trotter-Suzuki timestep. All

of these techniques are validated using numerical simulation and

detailed gate counts are given for realistic molecules.

http://arxiv.org/abs/1403.1539

The Trotter Step Size Required for Accurate Quantum Simulation of Quantum Chemistry

David Poulin, M. B. Hastings, Dave Wecker, Nathan Wiebe, Andrew C. Doherty, Matthias Troyer

The simulation of molecules is a widely anticipated application of quantum computers. However,

recent studies \cite{WBCH13a,HWBT14a} have cast a shadow on this hope by revealing that the

complexity in gate count of such simulations increases with the number of spin orbitals N as N8,

which becomes prohibitive even for molecules of modest size N∼100. This study was partly

based on a scaling analysis of the Trotter step required for an ensemble of random artificial

molecules. Here, we revisit this analysis and find instead that the scaling is closer to N6 in worst

case for real model molecules we have studied, indicating that the random ensemble fails to

accurately capture the statistical properties of real-world molecules. Actual scaling may be

significantly better than this due to averaging effects. We then present an alternative simulation

scheme and show that it can sometimes outperform existing schemes, but that this possibility

depends crucially on the details of the simulated molecule. We obtain further improvements

using a version of the coalescing scheme of \cite{WBCH13a}; this scheme is based on using

different Trotter steps for different terms. The method we use to bound the complexity of

simulating a given molecule is efficient, in contrast to the approach of \cite{WBCH13a,HWBT14a}

which relied on exponentially costly classical exact simulation.

http://arxiv.org/abs/1406.4920

𝐻 =෍

𝑝𝑞

ℎ𝑝𝑞𝑎𝑝
†𝑎𝑞 +

1

2
෍

𝑝𝑞𝑟𝑠

ℎ𝑝𝑞𝑟𝑠 𝑎𝑝
†𝑎𝑞

†𝑎𝑟𝑎𝑠

On the Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation

Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, Nathan Wiebe

Although the simulation of quantum chemistry is one of the most anticipated applications of

quantum computing, the scaling of known upper bounds on the complexity of these algorithms

is daunting. Prior work has bounded errors due to Trotterization in terms of the norm of the

error operator and analyzed scaling with respect to the number of spin-orbitals. However, we

find that these error bounds can be loose by up to sixteen orders of magnitude for some

molecules. Furthermore, numerical results for small systems fail to reveal any clear correlation

between ground state error and number of spin-orbitals. We instead argue that chemical

properties, such as the maximum nuclear charge in a molecule and the filling fraction of orbitals,

can be decisive for determining the cost of a quantum simulation. Our analysis motivates several

strategies to use classical processing to further reduce the required Trotter step size and to

estimate the necessary number of steps, without requiring additional quantum resources. Finally,

we demonstrate improved methods for state preparation techniques which are asymptotically

superior to proposals in the simulation literature.

http://arxiv.org/abs/1410.8159

Ferredoxin (𝐹𝑒2𝑆2) used in many metabolic reactions

including energy transport in photosynthesis

 Intractable on a classical computer

 Assumed quantum scaling: ~24 billion years (𝑁11 scaling)

 First paper: ~850 thousand years to solve (𝑁9 scaling)

 Second paper: ~30 years to solve (𝑁7 scaling)

 Third paper: ~5 days to solve (𝑁5.5 scaling)

 Fourth paper: ~1 hour to solve (𝑁3, 𝑍2.5 scaling)

Quantum Chemistry

http://arxiv.org/abs/1312.1695
http://arxiv.org/abs/1403.1539
http://arxiv.org/abs/1406.4920
http://arxiv.org/abs/1410.8159

Quantum Chemistry 𝐻 =෍

𝑝𝑞

ℎ𝑝𝑞𝑎𝑝
†𝑎𝑞 +

1

2
෍

𝑝𝑞𝑟𝑠

ℎ𝑝𝑞𝑟𝑠 𝑎𝑝
†𝑎𝑞

†𝑎𝑟𝑎𝑠

6/9/2016 M. Roetteler @ MSR / QuArC 21

Quantum and reversible
circuit synthesis

• 𝑇 + Clifford (𝐻,𝑋, 𝑌, 𝑍, 𝐼, 𝑆)

𝑇 = 𝑅
𝜋

4
=

1 0
0 𝑒𝑖𝜋/4

• 𝑉3 + Clifford (𝐻,𝑋, 𝑌, 𝑍, 𝐼, 𝑆)

𝑉3 =
1

5

1 + 2𝑖 0
0 1 − 2𝑖

•
𝜋

12
+ Clifford (𝐻,𝑋, 𝑌, 𝑍, 𝐼, 𝑆)

𝑅
𝜋

6
=

1 0
0 𝑒𝑖𝜋/6

• Fibonacci anyon basis:

𝜎1=
−𝜔 0
0 𝜔3 , 𝜎2 =

𝜔4𝜏 −𝜔2 𝜏

−𝜔2 𝜏 −𝜏
,

𝜔 = 𝑒𝑖𝜋/5, 𝜏 =
5 − 1

2

Instruction sets: universal single-qubit bases

6/9/2016 M. Roetteler @ MSR / QuArC 24

R
ev

er
si

b
le

Quantum compiling

Quantum computer

Quantum algorithm

Error correction

{ ,H,T}

≈ HTHTHTHTHTHTHTH

THTHTHTHTHTHTH...

25

this talk

6/9/2016 M. Roetteler @ MSR / QuArC

Year 2012: Revolution in synthesis methods!

(based on algebraic number theory)

[Kliuchnikov/Maslov/Mosca’12], [Selinger’12], [Ross/Selinger’14], [Kliuchnikov/Yard’15]

Reversible computing: why bother?

• Arithmetic:

– Factoring: just needs “constant” modular arithmetic

– ECC dlogs: need generic modular arithmetic

– HHL: need integer inverses; Newton type methods

• Amplitude amplification:

– Implementation of the “oracles”, e.g., for search, collision etc.

– Implementation of walk operators on data structures

• Quantum simulation:

– Addressing/indexing functions for sparse matrices

– Computing Hamiltonian terms on the fly
See also: “lifting monad” in Quipper

6/9/2016 28M. Roetteler @ MSR / QuArC

Fact: The set {Toffoli, CNOT, NOT} is
universal for reversible computing:
any even permutation on n qubits can
be written as a sequence of Toffoli,
CNOT, and NOT gates. [Toffoli’80],
[Fredkin/Toffoli’82]

Example:

Universal gate set: Toffoli gates

Main motivation: How can we find efficient implementations of reversible
circuits in terms of efficient Toffoli networks?
How can we do this starting from irreversible descriptions in a programming
language like Python or Haskell or F# or C?
Can we trade time (circuit depth) for space (#qubits) in a meaningful way?

Example: Carry ripple adder (in F#)

// module emission_tst_workaround: float -> float -> unit
// author = MG_Burns, changeset = 1519992, date = 06/03/2009

let THRTTL_MIN = 1.0
let THRTTL_MAX = 49.9

let emission_tst_workaround (v_front_wheels:float) (v_rear_wheels:float) =
let epa_detect = (v_front_wheels > 0.0) && (v_rear_wheels = 0.0)
if epa_detect then

let throttleSettings = THRTTL_MIN
let catConverterOn = true

else
let throttleSettings = THRTTL_MAX
let catConverterOn = false

runEngine throttleSettings catConverterOn

// MGB: just like taking candy from a baby

b

Example: If-then-else expressions

A By

pred pred-1

x

0

0

x

0

0

'y

If-then-else construct I

6/9/2016 M. Roetteler @ MSR / QuArC 31

By

pred pred-1

x

0

0

x

0

0

1 A

'y

1

If-then-else construct II

[Maslov, Saeedi ‘01]6/9/2016 M. Roetteler @ MSR / QuArC 32

If-then-else construct III

Ay

pred pred-1

x

0

0

x

0

0

0

'y0

B

A-1

B-1

y

0

6/9/2016 M. Roetteler @ MSR / QuArC 33

Reversible computing: at the gate level

• We assume that function is given as combinational circuits, i.e.,
circuits that do not make use of memory elements or feedback.

• Universal families of irreversible gates:

• We can compose gates together to make larger circuits.

• Basic issue: many gates are not reversible!

a
b

a Λ b a a

6/9/2016 M. Roetteler @ MSR / QuArC 34

Reversible computing: at the gate level
Example:

Replace each gate with a reversible one: (e.g. = Toffoli gate)

6/9/2016 M. Roetteler @ MSR / QuArC 35

Cleaning up the scratch bits

Replace each gate with a reversible one [Bennett, IBM JRD’73]:

T2

T1

Tn Tn
-1

T2
-1

T1
-1

0

0

0

0

0

0

0
result

6/9/2016 M. Roetteler @ MSR / QuArC 36

Pebble game: case of 1D graph

Example:

Rules of the game: [Bennett, SIAM J. Comp., 1989]
• n boxes, labeled i = 1, …, n
• in each move, either add or remove a pebble
• a pebble can be added or removed in i=1 at any time
• a pebble can be added of removed in i>1 if and only if there is a pebble in i-1
• 1D nature arises from decomposing a computation into “stages”

1 2 3 4

i

1 1
2 2
3 3
4 4
5 3
6 2
7 1

6/9/2016 M. Roetteler @ MSR / QuArC 37

Pebble game: 1D plus space constraints

Example: (n=3, S=3)

Imposing resource constraints:
• only a total of S pebbles are allowed
• corresponds to reversible algorithm with at most S ancilla qubits

1 2 3 4

i

1 1
2 2
3 3
4 1
5 4
6 3
7 1
8 2
9 1

6/9/2016 M. Roetteler @ MSR / QuArC 38

Optimal pebbling strategies
Definition: Let X be solution of pebble game. Let T(X) be # steps and
Let S(X) be #pebbles. Define F(n,S) = min { T(X) : S(X) ≤ S }.

Table (small values of F):

[E.Knill, arxiv:math/9508218]6/9/2016 M. Roetteler @ MSR / QuArC 39

Dynamic programming: Allowed us to find best
strategy for given number of steps n to be performed
and given space resource constraint S which is the
number of available pebbles.

This works ok for 1D chains. For general graphs the
problem of finding the optimal strategy is difficult
(PSPACE complete problem) -> need heuristics

#steps

time

Optimal pebbling strategies: 1D chains

6/9/2016 M. Roetteler @ MSR / QuArC 40

Optimal pebbling strategies: 1D chains

[Bennett ‘73]

[Lange-McKenzie-Tapp 2000]

6/9/2016 M. Roetteler @ MSR / QuArC 41

Let A be an algorithm with time complexity T and space complexity S.

• Using reversible pebble game, [Bennett, SIAM J. Comp. 1989] showed that for any ε>0
there is a reversible algorithm with time O(T1+ ε) and space complexity O(S ln(T)).

• Issue: one cannot simply take the limit ε→0. The space would grow in an
unbounded way (as O(ε21/ε S ln(T))).

• Improved analysis [Levine, Sherman, SIAM J. Comp. 1990] showed that for any ε>0
there is a reversible algorithm time O(T1+ ε/S ε) and space complexity O(S (1+ln(T/S))).

• Other time/space tradeoffs: [Buhrman, Tromp, Vitányi, ICALP’01]
Trev = S 3k 2O(T/2k), Srev = 𝑂 𝑘𝑆 , where k = #pebbles

special cases: k = O(1) → [Lange-McKenzie-Tapp, 2000]
k = log T → [Bennett, 1989]

• Pebble games played on general DAGs hard to analyze (opt #pebbles = PSPACE complete)
→ need heuristics to tackle general dependency graphs!

•

Time-space tradeoffs

6/9/2016 M. Roetteler @ MSR / QuArC 42

New technique:
Mutable data flow analysis

Mutability via in-place operations: e.g. adders

• This is an example for in-place operation (x,y) → (x,x+y)
• At the program level, mutable data can be identified (e.g. via)

6/9/2016 M. Roetteler @ MSR / QuArC 44

Manufacturing more in-place computations

Generic circuit identity: [Kashefi et al], [Mosca et al] describe method that allows in-
place efficient computation of f, provided that the inverse has an efficient circuit too.

Out-of-place circuit for f:

6/9/2016 M. Roetteler @ MSR / QuArC 45

Example:

Corresponding MDD:

Corresponding circuit:

Mutable data dependency graph (MDD)

6/9/2016 M. Roetteler @ MSR / QuArC 46

Mutable data dependency graph (MDD)
Example: function inlining; Boolean ops Corresponding MDD (only graph for f is shown; similar for g, h)

6/9/2016 M. Roetteler @ MSR / QuArC 47

Example (cont’d)

Generated reversible circuit

Note: - all ancilla qubits (scratch bits) are returned back in the 0 state (indicated by “|”)
- Some ancilla qubits are reused in the circuit (red circles above)
- Leads to space savings and offers advantage over alternative methods (e.g. original Bennett)

6/9/2016 M. Roetteler @ MSR / QuArC 48

Algorithm to clean up qubits early

REVS: Examples

An example at scale: SHA-2
Initialize hash values

h0 := 0x6a09e667

h1 := 0xbb67ae85

…

h7 := 0x5be0cd19

Initialize constants

k[0..63] := 0x428a2f98, 0x71374491, 0xb5c0fbcf, …

Do preprocessing

break message into 512-bit chunks (16 32bit ints)

Expand to 64 32 bit ints as follows:

Create W: a 64 entry array of 32 bit ints

Copy the massage into w[0..15] and do:

for each chunk

for i from 16 to 63

s0 := (w[i-15] ≫ 7) ⊕ (w[i-15] ≫ 18) ⊕ (w[i-15] ≫ 3)

s1 := (w[i-2] ≫ 17) ⊕ (w[i-2] ≫ 19) ⊕ (w[i-2] rshift 10)

w[i] := w[i-16] + s0 + w[i-7] + s1

Initialize working variables to current hash value:

a := h0

…

h := h7 Compression function main loop:

Do compression rounds

Add the compressed chunk to the current hash value:

h0 := h0 + a

…

h7 := h7 + h

digest := hash := h0 :: h1 :: h2 :: h3 :: h4 :: h5 :: h6 :: h7

Hash function:

[Source: Wikipedia]6/9/2016 M. Roetteler @ MSR / QuArC 51

Example: SHA-2 (in F#)

6/9/2016 M. Roetteler @ MSR / QuArC 52

The SHA-2 round function

a b c g hd e f

a b c g hd e f

Ch

Ma

Σ0

Σ1

Ki Wi

each 32bit
wide

constants

message
chunks

Boolean functions

SHA-2: hand-optimized reversible circuit

SHA-2: comparing different cleanup methods

All timings measured running the F# compiler in VS 2013 on
an Intel i7-3667 @ 2Ghz 8GB RAM (6 cores) under Win 8.1

We’re beating many REVLIB benchmarks

Bold = we beat
in size + width

Normal = we
beat in width

type Primitive =
| RTOFF of int * int * int
| RCNOT of int * int
| RNOT of int

let simCircuit (gates:Primitive list) (numberOfBits:int) (input:bool list) =
let bits = Array.init numberOfBits (fun _ -> false)
List.iteri (fun i elm -> bits.[i] <- elm) input
let applyGate gate =

match gate with
| RNOT a -> bits.[a] <- not bits.[a]
| RCNOT(a, b) -> bits.[b] <- bits.[b] <> bits.[a]
| RTOFF(a, b, c) -> bits.[c] <- bits.[c] <> (bits.[a] && bits.[b])

List.iter applyGate gates
bits

TSimulating Toffoli networks is easy

2/19/2016 57M. Roetteler @ MSR / QuArC

Compiler verification

TWhy verify?

2/19/2016 59M. Roetteler @ MSR / QuArC

How do we know that these are indeed the outputs of the circuit?

TSimulating Toffoli networks is easy

2/19/2016 60M. Roetteler @ MSR / QuArC

TReVer

2/19/2016 61M. Roetteler @ MSR / QuArC

TReVer: Operational semantics

2/19/2016 62M. Roetteler @ MSR / QuArC

TReVer architecture overview

2/19/2016 63M. Roetteler @ MSR / QuArC

Two verified paths:

• Bennett-style compilation, translate directly to circuit

• Space-efficient Boolean expression compilation

Circuit compiler and interpreter. Written and verified in F*

THANK YOU!

http://research.microsoft.com/groups/quarc/

http://research.microsoft.com/en-us/labs/stationq/

LIQ𝑈𝑖|⟩ is publicly available from
http://stationq.github.io/Liquid

martinro@microsoft.com

http://research.microsoft.com/en-us/labs/stationq/

