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Kleisli Maps

Substochastic map:

phd // 8/24 |sleep〉 + 8/24 |work〉

prof // |work〉
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X
substochastic // Y

======================

X
(“sharp”) map

// S(Y )

Here S(Y ) is the set of subdistributions on Y .

In fact, the category of sets and substochastic maps is isomorphic
to the Kleisli category of the subdistribution monad S.

So substochastic maps are “Kleisli maps”.
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It depends (on the exact definitions), but I would say:

NO! when A, B , and Q(B) are to have finite dimension,

YES! when A, B , and Q(B) may have infinite dimension.
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“Exact” definitions

1. A finite-dim. quantum datatype is a ‘ring’ of matrices:

M2 ⊕M3 ⊕ C
2 ⊆ M7 ≡ B(C7).

2. A quantum datatype is a von Neumann algebra, that is, a
‘ring’ of bounded operators on some Hilbert space H ,

A ⊆ B(H ),

which is closed in a suitable topology on B(H ).

3. vNCPsU is the category of von Neumann algebras and normal,
completely positive, subunital linear maps.
( A CPsU // B is a quantum process from B to A .)

4. vN ⊆ vNCPsU is the (wide) subcategory of multiplicative
unital maps — the “sharp” quantum processes.
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Main Theorem

vN
op
CPsU is isomorphic to the Kleisli category of a monad on vNop.

Proof sketch.
Since vN and vNCPsU have the same objects,
we need only prove that vN → vNCPsU has a left adjoint.

By the Adjoint Functor Theorem it suffices to show that

1. vN has all limits, and vN → vNCPsU preserves them, and

2. vN → vNCPsU satisfies the solution set condition.

Point 1 follows without without tricks.

Point 2 follows from this: if B is a von Neumann subalgebra
generated by a subset X of a von Neumann algebra, then

#B ≤ 22
#C ·#X

.
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3. F(C2) = ??

At least F(C2) is not commutative (because f (1, 0) and
f (0, 1) might not commute for a CPsU-map f : C2 → A ).
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This is the subject of the next talk!

Teaser:

J!AK = ℓ∞(vN(JAK,C)) JA⊸ BK = (FJ JBK)∗JAK

where (−)∗JAK is the Kornell’s free exponential.

Questions?


