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Symmetric Monoidal Categories

Definition
A strict symmetric monoidal category (C,⊗, I ) consists of

I Objects A,B,C , ...
I Morphisms f : A→ B
I Monoidal product ⊗

f : A→ B g : C → D

f ⊗ g : A⊗ B → C ⊗ D



Symmetric Monoidal Categories

A dagger on (C,⊗, I ) consists of an involutive symmetric monoidal
functor

† : Cop → C

i.e. every morphism has an adjoint

A B B A
f f †

f †† = f

Definition
An isomorphism f : A→ B is called unitary if f −1 = f †.



Frobenius Algebras

Definition
A †-special commutative Frobenius algebra (†-SCFA) in (C,⊗, I )
consists of: An object A ∈ C,

µ : A⊗ A→ A, η : I → A

µ† : A→ A⊗ A, η† : A→ I

satisfying...



Frobenius Algebras
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Frobenius Algebras

= = =

= = =



Observables are Frobenius Algebras

Let { |ei 〉 }i∈I be an orthonormal basis. Define the †-SCFA:

H H ⊗ H

|ei 〉 |ei 〉 ⊗ |ei 〉

µ†

Theorem (Coecke, Pavlovic, Vicary)
Every †-SCFA in fdHilb is of this form.



Observables are Frobenius Algebras

Let { |ei 〉 }i∈I be an orthonormal basis. Define the †-SCFA:

H H ⊗ H

|ei 〉 |ei 〉 ⊗ |ei 〉

µ†

Theorem (Coecke, Pavlovic, Vicary)
Every †-SCFA in fdHilb is of this form.



Observables are Frobenius Algebras

“Hence orthogonal and orthonormal bases can be axiomatised in
terms of composition of operations and tensor product only, without

any explicit reference to the underlying vector spaces.”



|0〉

|1〉

•

•

(
1 0
0 e iα

)
= Zα : Q → Q



Observables and Phases

A basis { |0〉 , |1〉 }

Zα|0〉 = |0〉
Zα|1〉 = |1〉

A †-SCFA { }

Zα
=

Zα

,
Zα

=
Zα

Call Zα the phases for this Frobenius algebra

or, the -phases
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Phase Groups and Unbiased Points

ĝ is called -unbiased if it is of the form

ĝ = g for a -phase g .

The -unbiased points are isomorphic to the -phase group.

g h ∼=
h

g



|0〉

|1〉

•

•



Algebraic Theories - PROPs

Definition
I A PROP is a strict symmetric monoidal category whose objects

are generated by a single object via the tensor product.
I A PROP is a strict symmetric monoidal category with objects

the natural numbers.

Definition
A †-PROP is a PROP with a dagger.
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Algebraic Theories - PROPs

Algebras of PROPs

F : A→ C



Example

M = (Σ,E )

Σ = { , }

E =

{
= , = , =

}

“M is the free theory of commutative monoids”



Example

Mop = (Σ,E )

Σ = { , }

E =

{
= , = , =

}

“Mop is the free theory cocommutative comonoids”



New PROPs From Old
Quotients of PROPs: T = (Σ,E )

T/E ′ := (Σ,E t E ′)

Coproduct of PROPs: T1 = (Σ1,E1) and T2 = (Σ2,E2)

T1 + T2 := (Σ1 t Σ2,E1 t E2)

Expressions in T1 + T2:

n m r sf g h

T1 T1

T2



New PROPs From Old
Quotients of PROPs: T = (Σ,E )

T/E ′ := (Σ,E t E ′)

Coproduct of PROPs: T1 = (Σ1,E1) and T2 = (Σ2,E2)

T1 + T2 := (Σ1 t Σ2,E1 t E2)

Expressions in T1 + T2:

n m r sf g h

T1 T1

T2



Composing PROPs

“T2 composed with T1”

T2;T1

(T1 + T2)/E = T2; T1
?



Composing PROPs

Q: when is (T1 + T2)/E a composition T2; T1?

A: when every morphism h : n→ m is of the form

n k mf g

T2 T1



Composing PROPs

Q: when is (T1 + T2)/E a composition T2; T1?

A: when every morphism h : n→ m is of the form

n k mf g

T2 T1



Composing PROPs

This amounts to giving rewrite rules:

n k ′ mf ′ g ′

T1 T2

n k m

λ

f g

T2 T1



Examples

M + Mop

7→ 7→ (λ)



Examples

M + Mop

= = (F)

F := (M + Mop)/F = M; Mop

“F is the free theory of Spiders”

· · ·

· · ·

:=

· · ·

· · ·
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Examples
Let G be an abelian group. Define the PROP G

Σ = {g : 1→ 1 | g ∈ G }, E = {g ◦ h = gh}

Consider F + G and equations:

g
= g g =

g
(P)

FG := (F + G)/P = M; G; Mop

“FG is the free theory of an observable with phase group G”

“FG is the free theory phased Spiders”
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Frobenius Frobenius



Strongly Complementary Observables

The (scaled) bialgebra equations

= , = , = (B)



Strongly Complementary Observables

= = (∗)

Theorem
The morphism

is an antipode for both bialgebras iff the equations (∗) hold.



Strongly Complementary Observables

, ,
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Frobenius Frobenius

, ,

, ,

Hopf

Hopf



Strongly Complementary Observables

IF(G ,H) := (FG + FH)/B∗

“IF(G ,H) is the free theory of a pair of strongly complementary
observables with given phase groups”
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Strongly Complementary Observables

Q: Is IF(G ,H) a composition FG ; FH?

Theorem
No.
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Theorem
The PROP IF(G ,H) is not a composition FG ; FH.

If it were a composition...

g1

h1

= n· · · =

h2

g2

· · ·
n



Set-Like Elements

Definition
A morphism h : 0→ 1 is called -set-like if

h

=
h h

A morphism g : 0→ 1 is called -set-like if

g

=
g g

Definition
Let K be the collection of -set-like elements. We say there are
enough -set-like elements if for any f , f ′ : 1→ 1:

∀g ∈ K , f ◦ g = f ′ ◦ g ⇒ f = f ′
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Set-Like Elements are Unbiased

Lemma
The -set-like elements are a subgroup of the -unbiased points.



Interacting Observables With Set-Like Elements

IFKd(G ≥ GK ,H ≥ HK )

I -set-like elements HK

I -set-like elements GK

I enough -set-like elements.



Proving the Theorem

Lemma
If HK is a finite group with exponent d, then

· · ·d =



Proving the Theorem

Proof. For k ∈ K

· · ·d

k

=

· · · kk k
d

= kd = =

k

Since we have enough -set-like elements, we are done.



Proving the Theorem

Theorem
The PROP IF(G ,H) is not a composition FG ; FH.
Proof.

g1

h1

= n· · · =

h2

g2

· · ·
n

=

g2

h2

Can pick model
where this holds

Always unitary

Never unitary



Proving the Theorem

Theorem
The PROP IF(G ,H) is not a composition FG ; FH.
Proof.

g1

h1

= n· · · =

h2

g2

· · ·
n =

g2

h2

Can pick model
where this holds

Always unitary

Never unitary



Proving the Theorem

Theorem
The PROP IF(G ,H) is not a composition FG ; FH.
Proof.

g1

h1

= n· · · =

h2

g2

· · ·
n =

g2

h2

Can pick model
where this holds

Always unitary

Never unitary



Conclusion

I There is no hope.

I Well OK, there might be some hope...
I Generalised Euler decomposition
I Recover other aspects of ZX calculus, e.g. the

Haddamard
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