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Meanings of ‘spectrum’

Physics & chemistry: emission/absorption spectra, mass spectroscopy, etc.

Linear algebra: eigenvalues of an operator, with their algebraic multiplicities

Functional analysis and PDEs: more sophisticated relatives of the linear
algebra notion

Commutative algebra: the spectrum of a commutative ring is its space of
prime ideals

. . . and many more meanings, all related to one another.
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Homotopy theory: spectrum ≈ infinite loop space.
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What ‘spectrum’ means in this talk

I will use ‘spectrum’ to mean the set Spec(T ) of eigenvalues
of a linear operator T on a finite-dimensional vector space,
with their algebraic multiplicities.

Algebraically and categorically, its properties seem awkward.

For instance, given operators S and T on the same space,
knowing Spec(S) and Spec(T ) tells you almost nothing about
Spec(S ○T ) or Spec(S +T ).

But socially, the spectrum is important!

So, there ought to be a clean abstract characterization of it.

This talk offers one.
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The goal of the talk is to explain this theorem:

Theorem

Among all invariants of linear operators on finite-dimensional vector spaces,
the universal cyclic, balanced invariant
is the set of nonzero eigenvalues with their algebraic multiplicities.

Plan:

1. Linear Algebra Done Right

2. Invariants

3. Cyclic invariants

4. Balanced invariants

5. The theorem
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1. Linear Algebra Done Right



Linear Algebra Done Right
by Sheldon Axler

Sheldon Axler (1975)

Book (1996)



The eventual image and eventual kernel

Throughout:

● let k be an algebraically closed field

● let X be a finite-dimensional vector space over k

● let T be a linear operator on X (i.e. a linear map T ∶X Ð→ X ).

The eventual image im∞(T ) of T is the intersection of the chain of
subspaces

im(T ) ⊇ im(T 2) ⊇ im(T 3) ⊇ ⋯.

This is smaller than the ordinary image im(T ).

The eventual kernel ker∞(T ) of T is the union of the chain of subspaces

ker(T ) ⊆ ker(T 2) ⊆ ker(T 3) ⊆ ⋯.

This is larger than the ordinary kernel ker(T ).
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The first canonical decomposition of a linear operator

Recall the notation: T is a linear operator on a fin-dim vector space X .

Lemma

X⤾T = ker∞(T )⤾T0 ⊕ im∞(T )⤾T×

where T0 is nilpotent (i.e. some power of T0 is 0) and T× is invertible.

In other words: (i) X = ker∞(T )⊕ im∞(T ), and (ii) T restricts to a
nilpotent operator on ker∞(T ) and an invertible operator on im∞(T ).

This is the unique decomposition of T as the direct sum of a nilpotent
operator and an invertible operator.

Contrast: usually X ≠ ker(T ) + im(T ), although we do have
dim X = dim ker(T ) + dim im(T ).
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The second canonical decomposition of a linear operator

Theorem

X⤾T =⊕
λ∈k

ker∞(T − λ)⤾Tλ

where Tλ − λ is nilpotent (i.e. the only eigenvalue of Tλ is λ).

We call ker∞(T − λ) the eventual eigenspace (or generalized eigenspace)
with value λ.

It is bigger than the ordinary eigenspace, which consists of those vectors
annihilated by applying T − λ just once.

Contrast: usually X ≠⊕
λ∈k

ker(T − λ). They are equal iff T is diagonalizable.

The eventual eigenspace ker∞(T − λ) is trivial for all except finitely many
values of λ ∈ k — namely, the eigenvalues.
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Comparing the two decompositions

First decomposition:

X⤾T = ker∞(T )⤾T0 ⊕ im∞(T )⤾T×

where T0 is nilpotent and T× is invertible.

Second decomposition:

X⤾T =⊕
λ∈k

ker∞(T − λ)⤾Tλ

where Tλ − λ is nilpotent.

The two operators called ‘T0’ are the same, and the second decomposition
refines the first:

im∞(T )⤾T× =⊕
λ≠0

ker∞(T − λ)⤾Tλ .



Comparing the two decompositions

First decomposition:

X⤾T = ker∞(T )⤾T0 ⊕ im∞(T )⤾T×

where T0 is nilpotent and T× is invertible.

Second decomposition:

X⤾T =⊕
λ∈k

ker∞(T − λ)⤾Tλ

where Tλ − λ is nilpotent.

The two operators called ‘T0’ are the same, and the second decomposition
refines the first:

im∞(T )⤾T× =⊕
λ≠0

ker∞(T − λ)⤾Tλ .



Comparing the two decompositions

First decomposition:

X⤾T = ker∞(T )⤾T0 ⊕ im∞(T )⤾T×

where T0 is nilpotent and T× is invertible.

Second decomposition:

X⤾T =⊕
λ∈k

ker∞(T − λ)⤾Tλ

where Tλ − λ is nilpotent.

The two operators called ‘T0’ are the same, and the second decomposition
refines the first:

im∞(T )⤾T× =⊕
λ≠0

ker∞(T − λ)⤾Tλ .



Comparing the two decompositions

First decomposition:

X⤾T = ker∞(T )⤾T0 ⊕ im∞(T )⤾T×

where T0 is nilpotent and T× is invertible.

Second decomposition:

X⤾T =⊕
λ∈k

ker∞(T − λ)⤾Tλ

where Tλ − λ is nilpotent.

The two operators called ‘T0’ are the same

, and the second decomposition
refines the first:

im∞(T )⤾T× =⊕
λ≠0

ker∞(T − λ)⤾Tλ .



Comparing the two decompositions

First decomposition:

X⤾T = ker∞(T )⤾T0 ⊕ im∞(T )⤾T×

where T0 is nilpotent and T× is invertible.

Second decomposition:

X⤾T =⊕
λ∈k

ker∞(T − λ)⤾Tλ

where Tλ − λ is nilpotent.

The two operators called ‘T0’ are the same, and the second decomposition
refines the first:

im∞(T )⤾T× =⊕
λ≠0

ker∞(T − λ)⤾Tλ .



Algebraic multiplicity

Let λ ∈ k .

The algebraic multiplicity of λ in T is

αT (λ) = dim ker∞(T − λ).

(We could also call it the ‘dynamic multiplicity’.)

Note that
X =⊕

λ∈k
ker∞(T − λ) ⇒ dim X = ∑

λ∈k
αT (λ).

We can then define:

● Trace: tr(T ) = ∑
λ∈k

αT (λ) ⋅ λ

● Determinant: det(T ) =∏
λ∈k

λαT (λ)

● Characteristic polynomial: χT (x) =∏
λ∈k

(x − λ)αT (λ) = det(x −T ).

All have their usual meanings!
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Functoriality of the eventual image

Given a category C , let Endo(C ) denote the category whose:

● objects are endomorphisms X⤾T in C

● maps X⤾T Ð→ Y⤾S are maps f ∶X Ð→ Y in C such that S ○ f = f ○T .

Let FDVect be the category of finite-dimensional vector spaces.

We’re interested in Endo(FDVect), the category of linear operators.

There is a functor

Endo(FDVect) Ð→ Endo(FDVect)
X⤾T ↦ im∞(T )⤾T× .

On maps, it’s defined by restriction: any map of operators f ∶X⤾T Ð→ Y⤾S

restricts to a map f ∶ im∞(T )⤾T× Ð→ im∞(S)⤾S× .
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2. Invariants



Definition and examples

Let E be a category. An invariant of objects of E is a function

ob (E )/≅ = {isomorphism classes of objects of E }Ð→ Ω,

where Ω is some set.

We’re studying invariants of linear operators. So take E = Endo(FDVect).

Examples of invariants of linear operators X⤾T :

● The trace or determinant or characteristic polynomial.

● The algebraic multiplicity αT (33) (etc.).

● The spectrum Spec(T ), defined as the set of eigenvalues with their
algebraic multiplicities. This is a finite subset-with-multiplicities of k.

● The invertible spectrum Spec×(T ), defined as the set of nonzero
eigenvalues with their algebraic multiplicities. This is a finite
subset-with-multiplicities of k× = k ∖ {0}.

● The isomorphism type of im∞(T )⤾T× .
(Can describe these iso types concretely via Jordan normal form.)
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Digression on the invertible spectrum

We just defined the invertible spectrum Spec×(T ) to be the
set-with-multiplicities of nonzero eigenvalues.

There’s also Spec(T ), the set-with-multiplicities of all eigenvalues.

Suppose we know dim X .

Then knowing Spec×(T ) is equivalent to knowing Spec(T ), because

α0(T ) = dim X −∑
λ≠0

αλ(T ).

Why are the nonzero eigenvalues interesting?

● because they tell you the values of µ for which µT − I is singular

● because of cyclicity. . .
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3. Cyclic invariants



Definition

Let C be a category. An invariant Φ of endomorphisms in C is cyclic if

Φ(g ○ f ) = Φ(f ○ g)

whenever X
f //Y
g

oo in C .

Example: Trace is cyclic: tr(g ○ f ) = tr(f ○ g).

A cyclic invariant Φ assigns a value to any cycle

Xn

X1

X2

X3

fn
f1

f2

in C , since Φ(fi ○ ⋯ ○ f1 ○ fn ○ ⋯fi+1) is independent of i .
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The eventual image is a cyclic invariant

Given

X
f //

Y
g

oo

in FDVect, we get

X⤾gf
f //

Y⤾fg
g

oo

in Endo(FDVect), hence by functoriality of the eventual image,

im∞(gf )⤾(gf )×
f //

im∞(fg)⤾(fg)×
g

oo

in Endo(FDVect).

But the composites of
f //
g

oo are (gf )× and (fg)×, which are invertible, so

im∞(gf )⤾(gf )× ≅ im∞(fg)⤾(fg)× .

Conclusion: The isom’m type of im∞(T )⤾T× is a cyclic invariant of X⤾T .

(In fact, this is the initial cyclic invariant of linear operators.)
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The invertible spectrum is a cyclic invariant

Again, take X
f //Y
g

oo in FDVect.

A similar argument shows that

ker∞(gf − λ) ≅ ker∞(fg − λ)

for all λ ≠ 0.

So gf and fg have the same nonzero eigenvalues with the same algebraic
multiplicities.

Conclusion: The invertible spectrum Spec× is a cyclic invariant.

Fact of life: This fails for the eigenvalue 0.

E.g. consider the first inclusion and first projection k ⇄ k ⊕ k .
One composite has 0 as an eigenvalue, and the other does not.

So, the multiplicity of 0 as an eigenvalue is not a cyclic invariant.
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4. Balanced invariants



Looking at an object from all directions

Suppose someone tells you ‘left perfect’ is an important property of rings.

Then you know there must be an equally important invariant, ‘right perfect’.

Formally: given a ring R, define Rop by reversing the order of multiplication.

This defines an automorphism ( )op of the category of rings.

Then R is right perfect ⇐⇒ Rop is left perfect.

Given a compact metric space X , let N1(X ) be the number of balls of
radius 1 needed to cover X .

If N1(X ) is interesting then so too must be Nr(X ) (the number of balls of
radius r needed to cover X ), for every r > 0.

Formally: define tX to be X scaled up by a factor of t.

For each t > 0, this defines an automorphism t ⋅ − of the category of metric
spaces.

Then Nr(X ) = N1((1/r)X ).
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Looking at an object from all directions

We agree that being invertible is an important property of linear operators.

For each λ ∈ k , we have an automorphism T ↦ T − λ of the category
Endo(FDVect) of operators.

So, given an operator T , it must be important to ask for each λ ∈ k whether
T − λ is invertible. . . and of course it is important!
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Balanced invariants
Let E be a category. An invariant Φ of objects of E is balanced if it ‘looks at
objects from all directions’

: formally, for every automorphism F of E ,

Φ(E1) = Φ(E2) Ô⇒ Φ(F (E1)) = Φ(F (E2))

for E1,E2 ∈ E .

In other words: Φ is balanced if Φ(E) determines Φ(F (E)).

E.g. {rings} left perfect?Ð→ {true,false} is not balanced, but

{rings} (left perf?, right perf?)Ð→ {true,false} × {true,false} is.

E.g. {compact metric spaces} N1Ð→ N is not balanced, but

{compact metric spaces} (Nr )r>0Ð→ {functions R+ → N} is.

E.g. {linear operators} injective?Ð→ {true,false} is not balanced, but

{linear operators} eigenvaluesÐ→ {subsets of k} is.
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The (invertible) spectrum is a balanced invariant

We have invariants Spec and Spec× on Endo(FDVect) (the category of
operators).

This category has some obvious automorphisms: those of the form
T ↦ αT + β, where α,β ∈ k with α ≠ 0.

Fix α and β. For all operators T ,

Spec(αT + β) = αSpec(T ) + β,

so Spec(T ) determines Spec(αT + β).

There are also some non-obvious automorphisms of Endo(FDVect)!

Even so, it’s a fact that Spec(T ) determines Spec(Φ(T )) for all
automorphisms Φ of Endo(FDVect).

The same is true of Spec× (for slightly more subtle reasons).

In other words, Spec and Spec× are balanced invariants of linear operators.
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5. The theorem



The theorem
Theorem

Spec× is the universal cyclic, balanced invariant of linear operators
on finite-dimensional k-vector spaces.

That is: let Ω be a set and take Φ∶ob (Endo(FDVect))/≅Ð→ Ω such that

i. Φ(g ○ f ) = Φ(f ○ g) whenever X
f //Y
g

oo in FDVect;

ii. Φ(T1) = Φ(T2) Ô⇒ Φ(F (T1)) = Φ(F (T2))
for all linear operators T1, T2 and automorphisms F of Endo(FDVect).

Then there exists a unique Φ such that

{operators} Spec× //

Φ
++XXXXXXXXXXXXXXXXXXXXXXXXXXXXX {finite subsets-with-multiplicity of k×}

Φ
��

Ω

commutes. (Thus, any such Φ is a specialization of Spec×.)

E.g.: tr is cyclic and balanced, and indeed tr(T ) = ∑λ∈k× αT (λ) ⋅ λ.
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Imitating the (invertible) spectrum in other categories

What happens if you replace FDVect by a different category?

That is: what if we look for the universal cyclic, balanced invariant of
endomorphisms in C , for some other category C ?

Example: In FinSet, a typical endomorphism looks like this:

The universal cyclic, balanced invariant of endomorphisms in FinSet is

X⤾T ↦ (number of 1-cycles,number of 2-cycles,number of 3-cycles, . . .).

That’s the ‘invertible spectrum’ of an operator on a finite set.
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Postscript: Commutative rings
and topos theory



From commutative rings to linear operators

The spectrum Spec(R) of a (commutative) ring R is the set of prime ideals
of R, equipped with:

● a certain topology

● a certain sheaf of local rings.

The spectrum of a linear operator is a special case:

Given an operator T , put R(T ) = k[x]/(χT (x)).

Then the prime ideals of R(T ) are

(x − λ1), . . . , (x − λm)

where λ1, . . . , λm are the eigenvalues of T .

Moreover, the stalks of the sheaf of local rings have dimensions
αT (λ1), . . . , αT (λm).

Thus, the linear-algebraic spectrum Spec(T ) can be recovered from the
ring-theoretic spectrum Spec(R(T )).

But how can we understand the ring-theoretic spectrum abstractly?
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Rings vs. local rings

Fact: The inclusion functor

(local rings)↪ (rings)

has no adjoint.

Idea: Overcome this by allowing the ambient topos to vary.

Let RingTopos be the category of pairs (E ,R) where E is a topos and R is
a ring in E .

Let LocRingTopos be the category of pairs (E ,R) where E is a topos and
R is a local ring in E .

Fact: The inclusion functor

LocRingTopos↪ RingTopos

has a right adjoint (for completely general reasons).

You can think of the adjoint as constructing the ‘free local ring’ on a ring:
but it might live in a different topos from the ring you started with.
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The spectrum as the free local ring

Let R be a ring.

Then R is a ring in Set, so determines an object (Set,R) of RingTopos.

Also Spec(R) is a topological space, giving a topos Sh(Spec(R)).

It comes with a sheaf of local rings, giving a local ring OR in the topos
Sh(Spec(R)).

So, the spectrum of R determines an object (Sh(Spec(R)),OR) of
LocRingTopos.

Theorem (Hakim)

The right adjoint to the inclusion LocRingTopos↪ RingTopos maps
(Set,R) to (Sh(Spec(R)),OR), for all rings R.

In this sense, Spec is exactly that right adjoint.
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Perspectives

Hakim’s theorem describes a universal property of the spectrum of a ring.

The spectrum of a linear operator is a special case of the spectrum of a ring.

So, this gives an abstract characterization of the spectrum of an operator.

However:

● To make the step from operators to rings, we used the characteristic
polynomial. What is its place abstractly?

● The characterization of the spectrum of an operator coming from
Hakim’s theorem is less direct than the one established in this talk,
which stays within the topos of sets.
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