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Motivation |TQQ>

Extreme violation of local realism in quantum hypergraph states
Phys. Rev. Lett. 116, 070401 (2016)
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Sarah Q. Malone
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Does this mean that there are some places we're free to be wildly
imaginative? &)

Physicists find extreme violation of
local realism in quantum
¢ hypergraph states

In the new study, the physicists discovered that
quantum hypergraph states have perfect...
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Terry Robson We've heard about redneck states but which are the
hypergraph states? Are they less extreme or more in their violation of the
locality?
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[-] LeQuint_Dickey 18 points 1 month ago

Is there an English version of this article somewhere?
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Great news! In a new study, physicists discovered that quantum
hypergraph states have perfect correlations that are highly nonlocal. This
means that hypergraph states strongly violate local realism. Got it?
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Physicists find extreme violation of local
realism in quantum hypergraph states
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So is this basically just a significant step in how we (by we I mean physics scientists) understand matter?
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Graph States vs Hypergraph States

Local stabilizer vs nonlocal stabilizer

Entanglement & Robustness

Local Pauli and Clifford equivalence rules
Outlook
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What are graph states and why to study them?
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Graph States |TQQ>

1 A graph: G = {V, E}.
) . _ 1
) Nodes: |+) \/5(|0)—H1>)
100 O
010 O
Edges: C,p = 001 0
4 5 000 -1

A graph state: |G) = H Ce|+)®N.
ecE
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Graph States |TQQ>

1 Graph State:

1G) = [Teee Ce I0)*".
5)
2 Stabiliser States:
g1 = X123
g8 = Xo1Z4
g = X3417Z5
4 3 :
gi|G) =+1G).
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Applications |TQ«Q>

Measurement-based quantum computation on cluster states

Robert Raussendorf, Daniel E. Browne,* and Hans J. Briegel
Theoretische Physik, Ludwig-Mazimilians-Universitit Minchen, Germany
(Dated: February 1, 2008)

‘We give a detailed account of the one-way quantum computer, a scheme of quantum computation
that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster
states. We prove its universality, describe why its underlying computational model is different from
the network model of quantum computation and relate quantum algorithms to mathematical graphs.
Further we investigate the scaling of required resources and give a number of examples for circuits
of practical interest such as the circuit for quantum Fourier transformation and for the quantum
adder. Finally, we describe computation with clusters of finite size.
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Applications 0O

Computational power of correlations

Janet Anders* and Dan E. Brown
Department of Physics and Astronomy, University College London,
Gower Street, London WCI1E 6BT, United Kingdom.
(Dated: February 5, 2009)

We study the intrinsic computational power of correlations exploited in measurement-based quan-
tum computation. By defining a general framework the meaning of the computational power of
correlations is made precise. This leads to a notion of resource states for measurement-based clas-
sical computation. Surprisingly, the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimony-Holt
problems emerge as optimal examples. Our work exposes an intriguing relationship between the
violation of local realistic models and the computational power of entangled resource states.

control computer

o ¢------¢
correlated resourc

FIG. 1: The control computer provides one of k choices as the
cl al input (downward arrows) to each of the correlated
parties (circles in the resource) and receives one of [ choices
as the output.
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Applications |TQMQ>

4°3. Quantum error correcting codes. — For quantum error correcting codes based on stabi-
lizer codes [22] the codewords as well as the encoding procedures can be represented as graphs
[40, 55, 56]. The latter can be understood along the lines of the previous subsection, because the
graph state is the computational resource for implementing the encoding process in terms of the
QC model. The graphs depicted in fig. 11 for example correspond to the encoding procedures
for the five-qubit Steane code and the concatenated (7, 1, 3]-CSS-code that encode a state on one
qubit into some state on five and 49 qubits respectively.

Fig. 11. — —Five-Qubit-Code and concatenated CSS-Code—
The graphs representing the encoding procedure for the
five-qubit and the concatenated [7, 1, 3]-CSS-code with in-
put (red), auxiliary (blue) and output (black) vertices.

M.Hein, W.Diir, J. Eisert, R. Raussendorf, M Van Den Nest, H.J. Briegel, Entanglement in Graph States and its Applications.
(2006)
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Graph States vs Hypergraph States |TQQ>

1
5
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4 3
Edges: C.=1—2]11...1)11...1]
1 0 0 0 0 0 0 0O
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Example— Hypergraph States |TQMQ>

The simplest HG state look as follows:
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Example— Hypergraph States |TQQ>

The simplest HG state look as follows:

3
|H) = Cios |[+)®

= J5[/000) +[001) + [010) + [100) + [011) 4 101) + [110) — [111)]
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Graph States vs Hypergraph States |TQQ>

1
5
2
4 3

16) =[] G l+=" H) =[] Ce[+)®" = G |+)*"

ecE ecE

Mariami Gachechiladze, Nikoloz Tsimakurid Hypergraph States 11 /31



Graph States vs Hypergraph States |TQQ>

1
5
2
4 3
16) = C1+®"
ecE
Stabiliser States:
g1 = X12423
g = XoZ1Z4
g3 = X341Zs
gi|G) = +|G).
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|H) = H Ce |+>®N = (123 |+>®N
ecE

Stabiliser States:

hy = X1Co3
ho = X5 Ci3
hs = X3Ci
Hypergraph States 11 /31



Nonlocality proofs for HG states |TQQ>

1 00 O
010 O
m=Xelg 01 0
hy = X, Cos 000 -1
hy = X5 Cy3
hs = X3C12
hi|H) = +[H).
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Nonlocality proofs for HG states |TQQ>

1 0 0 O
010 O
m=X®15 01 o
0 00 -1
h1 = X1Gp3
hy = XoCi3 P(+——|XzzZ)=0
h3 = X3Cp2
hi |H) = + |H).
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Nonlocality proofs for HG states |TQQ>

1 00 O
010 O
hh=X1® 001 0
0 00 -1

P(+ — —|XZZ) =0

Zl = §1gza P(— + —|XZZ) =?

2 = XoCi3

h3 = X3Ci2 P(— —+[X2z) =?
- =7
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Nonlocality proofs for HG states |TQQ>

P(+— —|XZZ) =0

P(—+—|X2Z) =0

hi = X1Ga3 P(——+[XZ2Z) =0
hy = XaGis P(— + +]XZ2) =0
h3 = X3Cp2

hi|H) = + |H).
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Nonlocality proofs for HG states |TQQ>

P(+ — —|XZ2Z) =0

P(—+ —|XZZ) =0
P(— — +|XZZ) =0

h1 = X1Co3

hy = X, C3 P(—+ +|XZZ)=0

hs = X3C12 + permutations from hy and hs.
hi |H) = + |H).
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Hardy argument for H |TQQ>

For the deterministic assignment of probabilities:

P(+—-—|XZZ)=0
P(—+ —|XZZ) + P(— — +|XZZ) + P(— + +|XZZ) =0
+
permutations coming from hy, h3

= P(+ — —|XXX) =0
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Hardy argument for H |TQQ>

For the deterministic assignment of probabilities:

P(+——|XZZ)=0
P(—+ —|XZZ) + P(— — +|XZZ) + P(— + +|XZZ) =0
+
permutations coming from hy, h3
= P(+——|XXX) =0
An actual value : P(+ — —|XXX) = ;.

|H) = 3 []000) + [010) + [100) + |111) ] S. Abramsky, C. Constantin, EPTCS 171, 2014, pp. 10-25
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Local Hidden Variable Model 1|23 for H |TQQ>

P(+——|XZZ)=0
P(—+ —|XZZ) + P(— — +|XZZ) + P(— + +|XZZ) =0
+
1 local + 2,3 no-signaling
_l’_

permutations coming from hy, h3

Mariami Gachechiladze, Nikoloz Tsimakurid Hypergraph States 14 / 31



Local Hidden Variable Model 1|23 for H |TQQ>

P(+——|XZZ)=0
P(—+ —|XZZ) + P(— — +|XZZ) + P(— + +|XZZ) =0
+
1 local + 2,3 no-signaling
_l’_

permutations coming from hy, h3

=
1 1
P(— — —|XXX) = T & P(———]ZZZ)Zg is banned!
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Local Hidden Variable Model 1|23 for H |TQQ>

P(+——|XZZ)=0
P(—+ —|XZZ) + P(— — +|XZZ) + P(— + +|XZZ) =0
+
1 local + 2,3 no-signaling
_l’_

permutations coming from hy, h3

=
P(— — —|XXX) = % & P(——-—-|Z2Z2) = % is banned!
Bell inequality:
P(4+ — —|XZZ) + permutations + P(—R3|XZZ) + permutations —
P(— — —ZZZ) 4+ P(— — —|XXX) >0
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Exponentially growing violation in graph states and hypergraph
states
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Mermin's Inequalities |TQQ>

|GH Zs)
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Mermin's Inequalities |TQMQ>

2 3

|\GHZ,) = %(mooo) +]1111)

|H) = C123C124C134C13a [+)®*

Mariami Gachechiladze, Nikoloz Tsimakurid Hypergraph States 16 / 31



Mermin's Inequalities |TQMQ>

2 3

|GHZ4) = J5(/0000) + [1111)

|H}) = Ci23CiasCrasCraa [H)®*

Now for an arbitrary |GHZy) : Now for an arbitrary ‘HI?\’I> :
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Mermin's Inequalities |TQQ>

2 3

(GHZs) = 25(10000) + [1111)

Now for an arbitrary |GHZy) :

XZZ...Z + permutations)—
XXXZZ...Z + permutations)+
XXXXXZZ...Z + permutations)—
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Mermin's Inequalities |TQMQ>

2 3

|GHZy) = 75(/0000) +[1111)

Now for an arbitrary |GHZy) :

[H}) = C123C124C134C 134 4

(Bg) = 2N-1 GHZ state

5o ) Now for an arbitrary |H,3\’,> :
Be) = 2

N. David Mermin (1990) Phys. Rev. Lett. 65(15).
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Mermin's Inequalities

2 3

|GH Zs) = 35(10000) + [1111)

Now for an arbitrary |GHZy) :

(Bg) = 2N-! GHZ state
(Be) = 2l

Mariami Gachechiladze, Nikoloz Tsimakurid

[H3) = C125C124C13aCrsa | )24

Now for an arbitrary |H,3V> :

1
(Bg) > 2’\’_2—5 HG state

(Be) = 2 LN\2]

M. Gachechiladze, C. Budroni, Otfried Giihne,
arXiv:1507.03570 (2015)
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Advantages of hypergraph states |TQMQ>

@ GHZ state becomes a fully
separable state after tracing out
one particle.
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Advantages of hypergraph states |TQMQ>

@ GHZ state becomes a fully
separable state after tracing out
one particle.

@ 4-uniform hypergraph states
still violate Mermin inequality
exponentially!

Mariami Gachechiladze, Nikoloz Tsimakurid Hypergraph States 18 / 31



[10)

Direct Applications

o Heisenberg-limited metrology?
- an advantage of being more robust to noise;

@ Nonadaptive measurement based quantum computation with linear
side-processing

+t W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Giihne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Nature

Phys. 6, 331 (2010).
11 M. J. Hoban, E. T. Campbell, K. Loukopoulos, and D. E. Browne, New J. Phys. 13, 023014 (2011).
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Local Unitary Equivalence Classes
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LU in graph and hypergraph states |TQMQ>

VXT vz~
vZ- VT
vz~ VXT
;2 ® .7~
vz vz

M. Hein, W. Diir, J. Eisert, R. Raussendorf, M. Van den Nest,
H.-J. Briegel arXiv:quant-ph/0602096
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LU in graph and hypergraph states |TQMQ>

VXt VT
vz- vz~ -
Y X7
vz VXT
vz
vz vz

M. Hein, W. Diir, J. Eisert, R. Raussendorf, M. Van den Nest,
H.-J. Briegel arXiv:quant-ph/0602096
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LU in graph and hypergraph states |TQMQ>

VXt VZ
vZ- VT
vz~ VXT
VZ-
vz vz

M. Hein, W. Diir, J. Eisert, R. Raussendorf, M. Van den Nest,
H.-J. Briegel arXiv:quant-ph/0602096
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M. Gachechiladze, N.Tsimakuridze, O. Giihne
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What have we seen for now? |TQMQ>

@ Graph states are elegant!

Mariami Gachechiladze, Nikoloz Tsimakurid Hypergraph States 25 /31



What have we seen for now? |TQQ>

@ Graph states are elegant!

@ Definition of hypergraph states and their stabilizer

Mariami Gachechiladze, Nikoloz Tsimakurid Hypergraph States 25 /31



What have we seen for now? |TQQ>

o Graph states are elegant!
o Definition of hypergraph states and their stabilizer

@ Entanglement and robustness properties
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Graph states are elegant!
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Entanglement and robustness properties
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What have we seen for now? |TQQ>

Graph states are elegant!
Definition of hypergraph states and their stabilizer
Entanglement and robustness properties

Applications

Local unitary equivalence classes
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What comes next? |TQQ>

@ Learn if other hypergraph states are nice as well
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What comes next? |TQQ>

@ Learn if other hypergraph states are nice as well
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What comes next?

@ Learn if other hypergraph states are nice as well
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@ Learn if other hypergraph states are nice as well

@ Relate entanglement measures with hypergraph theory
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What comes next? |TQQ>

Learn if other hypergraph states are nice as well

Relate entanglement measures with hypergraph theory

Proposal for experimental implementation of a hypergraph state
Local unitary equivalence classes

Can nonlocal stabiliser be simulated efficiently classically

Applications!!!
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Jacob Miller, Akimasa Miyake, Quantum computation on domain walls of a two-dimensional symmetry-protected topological
order arXiv:1508.02695v1
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Topological Quantum Memory? Hypertoric Codes |TQ_Q

A
4-_
i1 4
g 27 =
1 g
! 2
0t
L 2 3 4 5
(a) u

H=—3"A(v)- Y B(p) (1)
P

v

R. Raussendorf, S. Bravyi, and J. Harrington, Long-range quantum entanglement in noisy cluster states Phys. Rev. A 71,
062313 (2005)
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Topological Quantum Memory? Hypertoric Codes |TQ.Q

H=- > B- Y Aw- Y. Adw- Y Ao (32)

pep(@) po) p V@ ey (@ ey ® W@ er(©

The Hamiltonian can be viewed as three copies of the toric code which are intricately coupled

with each other via CZ phase operators.

Beni Yoshida, Topological phases with generalized global symmetries arXiv:1508.03468v1

Mariami Gachechiladze, Nikoloz Tsimakurid Hypergraph States 29 /31



Topological Quantum Memory? Hypertoric Codes |TQQ

THIS JOURNEY
1% FINISHED
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Thank you!
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