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Elements of zx-calculus diagrams
» green nodes with n inputs and m outputs, a € (—x, 7]

» Hadamard nodes with one input and one output

» star nodes with no inputs or outputs
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Elements of zx-calculus diagrams
» green nodes with ninputs and m outputs, a € (—m, 7]
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» red nodes with n inputs and moutputs, 5 € (—n, 7]
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» Hadamard nodes with one input and one output
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» star nodes with no inputs or outputs
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Composite diagrams

For arbitrary diagrams D and D':
» parallel composition corresponds to tensor product:

|2tz - [z« 2]

» sequential composition corresponds to matrix product:

(where the number of outputs of D must be equal to the number of
inputs of D)



Stabilizer quantum mechanics

Consists of:
» preparation of qubits in state |0)
» Clifford unitaries, generated by
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» measurements in computational basis
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Stabilizer quantum mechanics

Consists of:
» preparation of qubits in state |0)
» Clifford unitaries, generated by
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» measurements in computational basis
In zX-calculus:
» diagrams in which all phase angles are integer multiples of 7/2
» e.g.
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Rules of the stabilizer zx-calculus
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Meta rules:
» Only the topology matters.
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» All the rules above also hold upside-down and/or with colours

swapped.



Completeness and minimality

Definition
A graphical language for QM is complete if any two diagrams representing
the same matrix are equal according to the graphical rules, i.e.:

[[D1]] = [[DQ]] — D1 = D2

Theorem (B, 2012/2015)

The stabilizer zx-calculus is complete.



Completeness and minimality

Definition
A graphical language for QM is complete if any two diagrams representing
the same matrix are equal according to the graphical rules, i.e.:

[[D1]] = [[DQ]] — D1 = D2

Theorem (B, 2012/2015)

The stabilizer zx-calculus is complete.

Definition
A set of rules for a graphical language is minimal if no rule can be derived
from the others.

Can we find a minimal complete rule set for the zx-calculus?
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Simplifying the notation for scalars

We have:

k]

so the star node # is not necessary.

Replace occurence in rewrite rules:

oW = | becomes o@@z‘rﬁ



Removing derivable rules (and modifying others)
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Removing derivable rules (and modifying others)
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Meta rules:
» Only the topology matters.

» All the rules above also hold upside-down and/or with colours
swapped.



Example: deriving the m-commutation rule
To show: f ig = fg i;a for a € {0, £7/2, 7}

» Derive equalities about states with phases +7/2:

dr/2 ® /2 b—n/2
D - ®o—/77/2’ *GED - ®o—/7r/2’ ‘@ - ®07r/2/

» Use these to show:
o—7/2 om/2 = 33

» Prove the desired equality for each value of a in turn (here: a = 7/2):

EZ/z i e Ew/z 0 —m/2 Em/z - i::/z Jo /2 #g—w/Z

o—7/2

N i:r/z ®®®Zi/f/2$'ﬂ”/2 = ijr/2

This derivation only works within stabilizer QM.



Removing colour-swapped and upside-down duplicates

Meta rules:
» Only the topology matters.

» All the rules above also hold upside-down and/or with colours
swapped.



Removing colour-swapped and upside-down duplicates
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Meta rules:
» Only the topology matters.



The topology meta rule

Combines two different sets of properties:

» axioms of a symmetric compact closed category, i.e. existence of wire
crossing, cup, and cap, satisfying:

N-Q -5
C3 - VAL



The topology meta rule

Combines two different sets of properties:

» axioms of a symmetric compact closed category, i.e. existence of wire
crossing, cup, and cap, satisfying:

N-Q -5
C3 - VA -

» basic diagram components are invariant under interchange of two
inputs or outputs, as well as under bending inputs into outputs or
conversely, e.g.:

Gh= %% [ye=pe d=[)



Simplifying the topology meta rule

fats  oDQ-1F 1Y -4
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Only the topology matters.



Simplifying the topology meta rule
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Axioms of a symmetric compact closed category
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Some necessary rules

/2
= /2 proof from [Duncan & Perdrix, 2009/2014]
/2 T carries over with slight modifications
o @ @ = only rule to match the empty diagram
f =44 only rule to map connected outputs to dis-
connected ones
>(/a = o only rule to match red nodes of degree > 4
\ e
.y only rule that can transform nodes of de-
a+p gree > 4 into diagrams containing only
N lower-degree nodes

proof uses an alternative interpretation
omg=om functor that ‘doubles up’ spiders in different
colours (see arXiv:1602.04744)



Wires and nodes

The only rules to map between a diagram containing nodes and a diagram
containing only wires are the cup rule and the identity rule:

=/ and +:‘

so at least one of them is necessary.



Summary of necessity arguments so far
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Working in a symmetric compact closed category.

» spider rule, copy rule, Euler decomposition, colour change, zero rule,

inverse rule are all necessary
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Summary of necessity arguments so far

B35

Working in a symmetric compact closed category.

» spider rule, copy rule, Euler decomposition, colour change, zero rule,
inverse rule are all necessary

» need at least one equality between a diagram containing a node and a
diagram containing only a wire

» what about bialgebra?



Necessity of the bialgebra rule

Define alternative interpretation for zx-calculus diagrams that acts like the
usual interpretation on green spiders, wires, and the empty diagram, and
adds phases to red spiders and Hadamard nodes as follows:
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Necessity of the bialgebra rule

Define alternative interpretation for zx-calculus diagrams that acts like the
usual interpretation on green spiders, wires, and the empty diagram, and
adds phases to red spiders and Hadamard nodes as follows:

/ ’ /
[[]]b: —i[m] and >-<B _ K >.<5
Tk ko

The following rules are not sound under the new interpretation, so at least
one of them is necessary:

DG -1 Y 0§
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Necessity of the bialgebra rule

Define alternative interpretation for zx-calculus diagrams that acts like the
usual interpretation on green spiders, wires, and the empty diagram, and
adds phases to red spiders and Hadamard nodes as follows:

/ ’ /
[[]]b: —i[m] and >-<B _ K >.<5
Tk ko

Can modify the rules so that bialgebra is necessary — but at the cost of
introducing complicted scalars in some other rules:

D=1 1390-0

§ir=1-0 D w-=-wlii
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versions) to just 9, while keeping completeness
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» do not need to assume symmetry properties of spiders or Hadamard
node
» some open questions concerning minimality remain:
» of several rules relating spiders to categorical structure, unclear which
(or how many) are necessary
» can show necessity of bialgebra only using complicated modification of
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» additional rules are needed outside stabilizer QM, including
supplementary rule [Perdrix & Wang, 2015] and (probably)
m-commutation rule
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Thank you!
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