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Motivation: Bell’s experiment

Alice and Bob select one of two binary measurements.
Alice’s measurements: a, a′ with possible outcomes 0, 1
Bob’s measurements: b, b′ with possible outcomes 0, 1
Probabilities of joint outcomes:

(0, 0) (0, 1) (1, 0) (1, 1)

(a, b) 1/2 0 0 1/2
(a, b′) 3/8 1/8 1/8 3/8
(a′, b) 3/8 1/8 1/8 3/8
(a′, b′) 1/8 3/8 3/8 1/8

This setup is quantum mechanically realizable.

It is not classically realizable.

Goal: develop systematic techniques to study realizability.
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Motivation

Bell-type scenarios can be described using topology of
measurement covers. (Abramsky, Brandenburger)

Using topological cohomology theory, one obtains a criterion
for classical realizability. (Abramsky, Mansfield, Soares
Barbosa)

Bell-type scenarios can also be described using effect algebras.
(Staton, Uijlen)

Can we define cohomology of effect algebras?
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Effect algebras

Key feature of quantum logic: Partiality

A = “The particle P is at position x0.”

B = “The particle P has momentum p0.”

Conjunction A ∧ B is not defined in this case
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Effect algebras

Definition

An effect algebra consists of:

A set A

A partial binary operation ⊕ on A

Constants 0, 1 ∈ A

An orthocomplement operation (−)⊥ : A→ A

such that

The operation ⊕ is commutative and associative and has 0 as
neutral element

For every a ∈ A, a⊥ is the unique element for which
a⊕ a⊥ = 1

0⊥ = 1

If a⊕ 1 is defined, then a = 0
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Effect algebras

Examples

The unit interval [0, 1] is an effect algebra, with addition as ⊕
and a⊥ = 1− a.

Let H be a Hilbert space. Then

Ef (H) = {A : H → H | 0 ≤ A ≤ I}

forms an effect algebra with the same operations.

Any Boolean algebra is an effect algebra. a⊕ b is defined
whenever a ∧ b = 0, and in that case a⊕ b = a ∨ b.

Similarly, any orthomodular poset is an effect algebra.
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States

Effects represent measurements on a physical system. To each
effect algebra we associate a state space representing the
corresponding states.

St(A) =

{
σ : A→ [0, 1]

∣∣∣∣ σ(a⊕ b) = σ(a) + σ(b)
σ(1) = 1

}
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State spaces

St(A) =

{
σ : A→ [0, 1]

∣∣∣∣ σ(a⊕ b) = σ(a) + σ(b)
σ(1) = 1

}

Example

The state space of P(n) consists of a1, . . . , an ∈ [0, 1] such that
a1 + · · ·+ an = 1.

St(P(1)) St(P(2)) St(P(3)) St(P(4))
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State spaces

St(A) =

{
σ : A→ [0, 1]

∣∣∣∣ σ(a⊕ b) = σ(a) + σ(b)
σ(1) = 1

}

Example

The state space of Ef (H) is the set of density matrices on H, i.e.
all positive ρ : H → H for which tr(ρ) = 1.
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State spaces

St(A) =

{
σ : A→ [0, 1]

∣∣∣∣ σ(a⊕ b) = σ(a) + σ(b)
σ(1) = 1

}

The state space always forms a compact convex space:
if σ, τ are states and λ ∈ [0, 1], then

λσ + (1− λ)τ

is again a state.
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Bell’s experiment using effect algebras

Quantum measurements

Classical measurements

Probabilities
σ

Measurements and probabilities can be modeled by effect algebras.

Theorem (Staton, Uijlen)

σ classically realizable ⇐⇒ σ factors through ECM
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Bell’s experiment using effect algebras

EQM

ECM

[0, 1]
σ

Measurements and probabilities can be modeled by effect algebras.
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Bell’s experiment using effect algebras

EQM

ECM

[0, 1]
σ

Measurements and probabilities can be modeled by effect algebras.

Theorem (Staton, Uijlen)

σ classically realizable ⇐⇒ σ factors through ECM

Frank Roumen Cohomology of effect algebras



Idea of cohomology

In topology:

Functors H0,H1,H2, . . . : TopSp→ AbGrp

Hn(X ) provides information about holes in the space X , or about
extending loops to disks.
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Idea of cohomology

In effect algebra theory:

Functors H0,H1,H2, . . . : EffAlg→ AbGrp

Hn(A) provides information about states and state extensions.

EQM

ECM

[0, 1]
σ
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Constructing the cohomology groups

We modify Connes’ definition of cyclic cohomology.

1 Tests on an effect algebra A:

Tn(A) = {(a0, . . . , an) | a0 ⊕ · · · ⊕ an = 1}

2 Operations on tests:

di : Tn(A)→ Tn−1(A)

d0 : (a0, . . . , an) 7→ (a0 ⊕ a1, a2, . . . , an)

d1 : (a0, . . . , an) 7→ (a0, a1 ⊕ a2, a3, . . . , an)
...

dn : (a0, . . . , an) 7→ (an ⊕ a0, a1, . . . , an)
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Constructing the cohomology groups

Tn(A) = {(a0, . . . , an) | a0 ⊕ · · · ⊕ an = 1}

3 Cocycles:

Cn(A) =

{
ϕ : Tn(A)→ R

∣∣∣∣ ϕ(an, a0, . . . , an−1)
= (−1)nϕ(a0, . . . , an)

}

4 Operations on cocycles:

d i : Cn−1(A)→ Cn(A)

d iϕ =
(

Tn(A)
di−→ Tn−1(A)

ϕ−→ R
)
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Example

For n = 1:
ϕ(a, b) = −ϕ(b, a)
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Constructing the cohomology groups

Tn(A) = {(a0, . . . , an) | a0 ⊕ · · · ⊕ an = 1}

3 Cocycles:

Cn(A) =

{
ϕ : Tn(A)→ R
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d i : Cn−1(A)→ Cn(A)

d iϕ =
(

Tn(A)
di−→ Tn−1(A)

ϕ−→ R
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Example

For n = 1:
ϕ(a, a⊥) = −ϕ(a⊥, a)
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Constructing the cohomology groups

Tn(A) = {(a0, . . . , an) | a0 ⊕ · · · ⊕ an = 1}

Cn(A) =

{
ϕ : Tn(A)→ R

∣∣∣∣ ϕ(an, a0, . . . , an−1)
= (−1)nϕ(a0, . . . , an)

}
5 Cochain complex:

C0(A) C1(A) C2(A) · · ·d0

d1

d0

d1

d2

d0

d1

d2

d3

δ1 δ2 δ3

δn = d0 − d1 + d2 − · · · ± dn

6 Hn(A) = ker(δn+1)/ im(δn)
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Cohomology

Examples

Cohomology of the unit interval [0, 1]:

H0([0, 1]) = R
Hn([0, 1]) = 0 for n > 0

Cohomology of the Boolean algebra P(m):

Hn(P(m)) = R(m−1
n )
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First cohomology group

The first cohomology group is related to the state space.
The state space is always a compact convex space.
Every convex space can be embedded in an R-vector space.
In fact, there is a smallest vector space in which it embeds:

R2
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First cohomology group

Theorem

Let A be a finite effect algebra that has enough states. Then
H1(A) is the smallest vector space in which St(A) can be
embedded:

St(A) H1(A)

V

i

j
ϕ

“A has enough states” means:
if σ(a) = σ(b) for all states σ, then a = b.
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Applications

Let σ : A→ [0, 1] be a state on an effect algebra A, for instance
the Bell state. Then:

σ classically realizable
σ factors through

a Boolean algebra B

∂(i(σ)) = 0

A

B

[0, 1]
σ
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Order cohomology

How to get rid of false positives?

Adapt the definition of cohomology!

σ classically realizable
σ factors through

a Boolean algebra B

∂(i(σ)) = 0∂(i(σ)) ≥ 0
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Conclusions

Effect algebras can be used to model contextuality scenarios.

Cohomology of effect algebras is relatively easy to compute,
and contains information about states and classical
realizability.

Order cohomology provides a criterion for classical realizability
without false positives, but is more difficult to compute.
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