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We present ...
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Quantum Lambda Calculus

Quantum Lambda Calculus
~ linear lambda calculus + quantum primitives

qubit type, preparation, measurement, unitary transformation

(Unlike Quipper, no manipulation of quantum circuits)

* Type system is based on linear logic with the
exponential modality “!"

* Each input can be used only (at most) once, unless it
has a duplicable type !4

* Studied extensively by Selinger and Valiron in 2000s
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Syntax of Quantum Lambda Calculus

We follow [Selinger & Valiron ‘06, '09] (with & type,
without recursion)

Type A,B:=T |qbit |!1A|A—-B|AQB|A®B
Term M,N,L :=x|* |new|meas |U | \e.M | MN
| let (x,y) = N in M
| (M,N) | inl(M) | inr(N)
| match L with (z+— M |y +— N)
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Syntax of Quantum Lambda Calculus

We follow [Selinger & Valiron ‘06, '09] (with & type,
without recursion)

Type A,B:=T |qbit |!1A|A—-B|AQB|A®B
Term M,N,L :=x|* |new|meas |U | \e.M | MN
| let (x,y) = N in M
| (M,N) | inl(M) | inr(N)
| match L with (z+— M |y +— N)

Examples of typing:
v/ x:gbit,y:qbitF (z,y) : qbit ® gbit
X x:qgbitk (z,x) : qbit ® gbit
Voo lAF(x,z) AR A
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Models of Quantum Lambda Calculus
A (denotational/categorical) model of a language consists
of a category C and an interpretation [—]:
types A — objects [A] € C

well-typed terms

AL M-B — arrows[[A]] [[B]] in C
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Models of Quantum Lambda Calculus
A (denotational/categorical) model of a language consists
of a category C and an interpretation [—]:
types A — objects [A] € C

well-typed terms

AL M-B —>  arrows [[A]] [[B]] in C

Models of quantum lambda calculi are nontrivial!
* Selinger & Valiron introduced a quantum lambda
calculus with its operational semantics in 2005
* The first model was obtained by Malherbe in 2010
using presheaf categories
* Two other models (both accommodate recursion)
¢ [Hasuo & Hoshino, LICS'11], via Gol
* [Pagani, Selinger & Valiron, POPL'14], applying
quantitative semantics
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Previous and our approaches

One reason that designing such a semantics [of QLC] is
difficult is that quantum computation is inherently defined on
finite dimensional Hilbert spaces, whereas the semantics of
higher-order functional programming languages [...] is
inherently infinitary. [Pagani, Selinger & Valiron "14]
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Previous and our approaches

One reason that designing such a semantics [of QLC] is
difficult is that quantum computation is inherently defined on
finite dimensional Hilbert spaces, whereas the semantics of
higher-order functional programming languages [...] is
[Pagani, Selinger & Valiron "14]

inherently infinitary.

Previous approaches:

Fin. dim. structure

c", M,

»

Construction
presheaf
Gol

quanti. sem.

» Model

Our approach: simply use von Neumann algebras, an
infinite dimensional generalisation of matrix algebras
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Von Neumann algebras

* Avon Neumann algebra (aka. W*-algebra)is a
x-algebra ('ring’) of operators on a Hilbert space
which is closed in a suitable topology

* Developed by von Neumann and Murray in a series
of papers “On rings of operators” in 1930s-1940s
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Von Neumann algebras

* Avon Neumann algebra (aka. W*-algebra)is a
x-algebra ('ring’) of operators on a Hilbert space
which is closed in a suitable topology

* Developed by von Neumann and Murray in a series
of papers “On rings of operators” in 1930s-1940s

e Examples: B(H); M,,, ®--- & M,,; C"

[The theory of von Neumann algebras] generalizes
many familiar facts about finite-dimensional algebra,
and is currently one of the most powerful tools in the
study of quantum physics. [P.R. Halmos 1973]
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Interpretation of types in v.N. algebras

Type A, B:=T |qbit |[!1A|A—-B|A®B|A®B
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Interpretation of types in v.N. algebras

Type A, B:=T |qbit |[!1A|A—-B|A®B|A®B

[T]=C complex numbers
[abit] = My 2 x 2 matrices
[A® B] =[A] ® [B] tensor product of v.N. alg.
[Ae® B] = [A] @ [B] direct sum of v.N. alg.
[A — B] = ??
['A] = ??
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Interpretation of types in v.N. algebras

Type A, B:=T |qbit |[!1A|A—-B|A®B|A®B

[T]=C complex numbers
[abit] = My 2 x 2 matrices
[A® B] =[A] ® [B] tensor product of v.N. alg.
[Ae® B] = [A] @ [B] direct sum of v.N. alg.
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Interpretation of types in v.N. algebras

Type A, B:=T |qbit |[!1A|A—-B|A®B|A®B

[T]=C complex numbers
[abit] = My 2 x 2 matrices
[A® B] =[A] ® [B] tensor product of v.N. alg.
[Ae® B] = [A] @ [B] direct sum of v.N. alg.
[A — B] = (Fg[B])"™
[!A] = £(vN([A], C))

£ J
/—N op C—— op
Set . 1 7 vN®® = 1 ~ vN¢pwy
vN(—,C) F

How does this work?
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Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron '09] is:

LC (C,®,1) DT
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Categorical structures for the QLC
A concrete model of the QLC [Selinger & Valiron '09] is:

LC (C,®,1) DT

(C,®,I)a SMC with finite coproducts (, 0)

* T astrong monad with a Kleisli exponential —o s.t.
C(A® B,TC) = C(A, B — O)

* cf. Moggi's computational lambda calculi

L alinear exponential comonad
* a categorical model of the exponential modality
K/(T) contains the category Q [Selinger '04]

* Quantum operations between fin. dim. algebras
* To interpret quantum primitives

uyn

* and certain conditions (e.g. L preserves ®,®)

Cho (Nijmegen)



Qur model

comonad LC (C,®,1) :)T monad
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Qur model

ZOO

Set =1 * v
vN(—,C)
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Qur model

= J
Set 7L VN 7L Ny
vN(—,C) F

(Opposite categories of)

e vN: v.N. algebras and normal unital
x-homomorphisms (aka. normal MIU-maps)

* vINepgu: V.N. algebras and normal completely
positive subuntial (CPsU) maps
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Qur model

£°° J
op — > op
Set N—/ vIN &J‘_/ VNCPSU
vN(—,C) F

(Opposite categories of) structure-preserving maps

* vN: v.N. algebras and normal unital
x-homomorphisms (aka. normal MIU-maps)

* vINepgu: V.N. algebras and normal completely
positive subuntial (CPsU) maps
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Qur model

£°° J
Set — L * VN 1 VN
vN(-,C) F
(Opposite categories of) structure-preserving maps

* vN: v.N. algebras and normal unital
x-homomorphisms (aka. normal MIU-maps)

* vINepgu: V.N. algebras and normal completely
positive subuntial (CPsU) maps

quantum processes/operations
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Qur model

£°° J
op &— op
Set T 1 VN T 1 7 vN{hy
vN(—,0) F

(Opposite categories of) structure-preserving maps

* vN: v.N. algebras and normal unital
x-homomorphisms (aka. normal MIU-maps)

* vINepgu: V.N. algebras and normal completely
positive subuntial (CPsU) maps

o vIN C vNgpay guantum processes/operations

Goal. vIN°? forms a concrete model of the QLC. )

©® vN is symm. mon. via tensor products ® and C

® vIN°? has coproducts given by direct sums @&

products in vIN
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A result of Andre Kornell

Theorem (Kornell 2012). The SMC (vIN°?’, ®, C) is
closed. Namely: for any v.N. alg. <7, % there is %*“
(called the free exponential) s.t.

VN (% ® of | B) = VNP (€, B*)
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A result of Andre Kornell

Theorem (Kornell 2012). The SMC (vIN°?’, ®, C) is

closed. Namely: for any v.N. alg. <7, % there is %*“
(called the free exponential) s.t.

VNP (¥ ® o, B) = VNP (€, B*)

* Appeared (only) at arXiv:1202.2994 [math.OA]

Alternative proof by applying Adjoint Functor Theorem
to(—)®«/: vN — vN
® vN is complete, locally small
0 (—) ® o preserves limits (D, 5) 7 =D, B ®
® Solution Set Condition

Warning: we do not know a good description of the
free exponential. (Even My*M2 is hard!)
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Monad part (right-hand side)

L] 3 op
Set ._ 1 ¢ vN® 1 7 vNiLy
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Monad part (right-hand side)

o 1 J :

L] 3 op 1

Set 71 ¢ vIN® — Ll 7 vINcpau ;
VN(*,O) F 1

©® The previous talk by AW.:
* The inclusion J has a right adjoint F (via AFT)
¢ ’Cg(fj) = VN(())I}’SU
(since vNP(of, FTAB) = VN by (o, B))
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Monad part (right-hand side)

o 1 J :

L] 3 op 1

Set = 1 ¢ vN° — Ll 7 vINcpau ;
VN(*,O) F 1

©® The previous talk by AW.:
* The inclusion J has a right adjoint F (via AFT)
* KI(FT) = vNepgy
(since vNP(of, FTAB) = VN by (o, B))
® vIN{L.; contains Q (in fact, fdvNgL ., ~ Q)
® FJ is a strong monad, since J is strict monoidal
® Kleisli exponential & — B = (FJB)*
« VN(¢ @ o, FTB) = VNP (€, (FT%)*)
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Linear exponential comonads

II'II

= Categorical models of the exponential modality

)

A comonad L is linear exponential when endowed with
a comonoid structure on each object LA:

LA— LA® LA LA —1T

(suitably compatible with the comonad structures)
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a comonoid structure on each object LA:
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Linear exponential comonads

= Categorical models of the exponential modality “!" ]

A comonad L is linear exponential when endowed with
a comonoid structure on each object LA:

Contraction Weakening
(Duplication) LA — LA® LA LA —1 (Discarding)

(suitably compatible with the comonad structures)

Theorem (Benton). [If we have a symm. mon. adjunction

between a SMC and a cartesian monoidal category as in

F
—

(B, x,1) 1 (C,®,I)

)
G

then the comonad F'G on C is linear exponential.
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Comonad part (left-hand side)

] e ] J

' G NP

' Set =1 > vN° 1L~ vINEpoy
: vN(—,C) v F
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Comonad part (left-hand side)

] oo : J

: G op

b Set 71 = VN T 1 VN2,
: vN(—,C) v F

® vN(—,C) is a hom-functor
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' Ly v J

' — G NP

' Set .1 vN? 1 VN by
: VN(fr(C) : F

® vN(—,C) is a hom-functor

® For eachset X, (*°(X) = {bounded ¢: X — C} isa
v.N. algebra, giving a functor (>
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Comonad part (left-hand side)

' £ . J

: —— G NP

v Set 1 T VN T 1 7 vNipy
: vN(—,C) v F

® vN(—,C) is a hom-functor

® For eachset X, (*°(X) = {bounded ¢: X — C} isa
v.N. algebra, giving a functor (>
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Comonad part (left-hand side)

' Lt . J

: —— G NP

v Set 1 T VN T 1 7 vNipy
: vIN(—,C) ' F

® vN(—,C) is a hom-functor

® For eachset X, (*°(X) = {bounded ¢: X — C} isa
v.N. algebra, giving a functor (>

® The dual adjunction Set = vN°? via

“swapping arguments” f(x)(a) = g(a)(x)
for f: X —» vIN(«/,C) and g: & — (~(X)

® Set is cartesian (x, 1)
@ Set = vIN? is monoidal: /(X x V) & (>(X) ® (>(Y)
0 (*°(vN(—,QC)) is linear exponential by Benton
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e J
Set = L 2 vN® 1 7 vNhy
vN(—,C) F
forms a concrete model of the QLC, in the sense of S.&V.
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e J
Set (L = vN® 1 7 vNhy
vN(—,C) v
forms a concrete model of the QLC, in the sense of S.&V.

Interpretation of types

[T]=C [qpbit] = My
[A® B] = [A] ® [B] [A® B] = [A] ® [B]
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72 J
/—ﬂ op &— op
Set M(/) vN? 1 7 vNepgy
vN(—,C F
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£2° I
/—N op &— op
Set 7 1L 7 vN°® = 1 ~ vN¢py
vN(—,C) F

forms a concrete model of the QLC, in the sense of S.&V.

Interpretation of types

[T]=C [qpbit] = My
[A® B] = [A] ® [B] [A® B] = [A] ® [B]
[A — B] = (F7[B])"1 [1A] = ¢=(vN([A], C))

Interpretation of terms
Well-typed term z : A+ M : Bis interpreted by
* aKleislimap [4] LN FJ[B] in vN°
* i.e. amap [A] — [B] in vN{gby
* i.e. anormal CPsU-map [B] — [A]
(quantum process!)
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Examples of interpretations

[T]=[T]=C
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Examples of interpretations

[lbit] = ]]_ (bit =T @ T)
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Examples of interpretations

[TI= (7] =
['bit] = [bi ]] (bit=T®T)
[lgbit] = ¢ (VN(MQ, C)) = {0}

since VIN(M,, C) = @.
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Examples of interpretations

[Ty =0Tl=
[lbit] = ﬂblt]] = (bit =T @ T)

[lqpit] = ﬁm(vN(Mz, C)) = {0} initial in vIN°P

since vVIN(M,, C) = @. This is as expected, because
there is no valid typing judgement + M : Igbit.
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Examples of interpretations

['T] = ]] =
[loit] = ]] (bit =T @ T)

[lqpit] = 5( (Mz, C)) = {0} initial in vIN°P

since vVIN(M,, C) = @. This is as expected, because
there is no valid typing judgement + M : Igbit.

[A— Bl = (FIB)™ =27
[(4 — B)]) = =(vN(FI[B) M, €)
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Examples of interpretations

[T [T] =
[bit] 2 [bi ]] (bit=T&T)

[lqpit] = £ (VN(Mz, C)) = {0} initial in vIN°P

since vVIN(M,, C) = @. This is as expected, because
there is no valid typing judgement + M : Igbit.

[A —o B] = (]:jﬂB]])*[[AH = ??
[(A — BY] = e>(vN((FI[B])'™, C))
~ (=(vN(FJ[B]. [A]))
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Examples of interpretations

[Tl=[T]=
[bit] = [bi ]] (bit =T @& T)

[lqpit] = £ (VN(Mz, C)) = {0} initial in vIN°P

since vVIN(M,, C) = @. This is as expected, because
there is no valid typing judgement + M : Igbit.
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Examples of interpretations

[T [T] =
[bit] 2 [bi ]] (bit=T&T)

[lqpit] = £ (VN(Mz, C)) = {0} initial in vIN°P

since vVIN(M,, C) = @. This is as expected, because
there is no valid typing judgement + M : Igbit.

[A —o B] = (]:jﬂB]])*[[AH = ??
[(A — BY] = e>(vN((FI[B])'™, C))
~ (=(vN(FJ[B]. [A]))
= (> (vNepsu([B], [A]))
quantum pprocesses
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Remarks
* Duplicable types ! A are interpreted by ¢*°(X), rather

than arbitrary commutative von Neumann algebras
such as L*>®(X, u)
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Remarks

* Duplicable types ! A are interpreted by ¢*°(X), rather
than arbitrary commutative von Neumann algebras
such as L*>®(X, u)

* There exists an adjunction CvN°? = vIN°P, which
does not give a linear exponential comonad

* Infact, any comonoid in the SMC vN°P (or VN%%SU)
must be of the form ¢>°(X)

e (*-algebras do not work similarly, since Cstar is
not a closed SMC
* ® does not distribute over infinite
* Our model is adequate wrt. the operational
semantics

* Laborious but straightforward, since our language
does not contain recursion
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Conclusions

Von Neumann algebras are powerful enough to
interpret Selinger & Valiron’s Quantum Lambda
Calculus, via the adjunctions:

£ J
/—N op &— >
Set M(?) vIN? 71 7 vN{bg
vIN F

Future work:
e Recursion
vN{pboy is depo-enriched, but vINP is not

* Understand the interpretation of —o better
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Conclusions

Von Neumann algebras are powerful enough to
interpret Selinger & Valiron’s Quantum Lambda
Calculus, via the adjunctions:

£ J
/—N op &— >
Set M(?) vIN? 71 7 vN{bg
vIN F

Future work:
e Recursion
vN{pboy is depo-enriched, but vINP is not

* Understand the interpretation of —o better

Thank you!
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