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The sheaf theoretic description of contextuality

Recent work by Abramsky and Brandenburger used sheaf theory to give a
mathematical formulation of non-locality and contextuality.

Basic scenario: Two agents Alice and Bob choose between two binary
measurements each, in a (2, 2, 2) Bell-type scenario:
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The sheaf theoretic description of contextuality

Measurement scenarios can be described abstractly:

Measurement scenario 〈X ,M,O〉 and the event sheaf E
X is a finite set of measurement labels (e.g. X = {a1, a2, b1, b2}).

M is a finite cover of X containing the contexts
(e.g. M = {{a1, b1}, {a1, b2}, {a2, b1}, {a2, b2}}).

O is a finite set of outcomes (e.g. O = {0, 1}).

E : P(X )op → Set :: U 7→ OU is the sheaf of events.

Every measurement scenario can be represented as a simplicial complex
having measurements as vertices. A set of measurements forms a face if
they can be jointly performed.

Example: (2, 2, 2) Bell-type scenario
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The sheaf theoretic description of contextuality

A no-signalling probabilistic empirical model e is a compatible
family {eC}C∈M, where eC is a probability distribution on E(C ).

An empirical model can be expressed as a probability table, e.g.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 1/2 0 0 1/2
a2 b1 3/8 1/8 1/8 3/8
a1 b2 3/8 1/8 1/8 3/8
a2 b2 1/8 3/8 3/8 1/8

↓

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 1 0 0 1
a2 b1 1 1 1 1
a1 b2 1 1 1 1
a2 b2 1 1 1 1

The support of a probabilistic empirical model determines a possibilistic
empirical model.
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The sheaf theoretic description of contextuality

A possibilistic empirical model on a scenario 〈X ,M,O〉 is a
subpresheaf S of E such that

1 S(C ) 6= ∅ for all C ∈M (i.e. at least one possible event per
context)

2 S is flasque beneath the cover, i.e. the map S(U ⊆ U ′) is
surjective whenever U ⊆ U ′ ⊆ C for some C ∈M (possibilistic
version of no-signalling).

3 Every family {sC ∈ S(C )}C∈M which is compatible (i.e. such that
sC |C∩C ′= sC ′ |C∩C ′ for all C ,C ′ ∈M) induces a unique global
section in S(X ).

Contextuality

A model S is logically contextual at a given section s, or LC(S, s),
if s is not a member of any compatible family.

S is strongly contextual, or SC(S), if LC(S, s) for all s. In other
words there is no global section (S(X ) = ∅).
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Bundle diagrams

Bundle diagrams can be very helpful in representing models:
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Figure: Left: a (2, 2, 2) scenario. Centre: the section (a1, b1) 7→ (1, 1). Right:
the global section (a1, b1, a2, b2) 7→ (1, 1, 0, 0)



Bundle diagrams

Possibilistic no-signalling (i.e. flaccidity beneath the cover) corresponds
to the property that each possible section can be extended in each
adjacent context.

A signalling empirical model
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Here, the event b1 7→ 1 depends on the choice of Alice. It is possible
if Alice chooses a1 yet impossible if she chooses a2.
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Examples
Hardy is logically contextual but not strongly contextual

Hardy model
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Examples
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Examples
PR box is strongly contextual

PR box model
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Contextuality and impossible figures

The main idea behind the concept of contextuality is the contrast
between local consistency vs global inconsistency.

This discrepancy has been studied as a geometrical/topological property
using Čech cohomology theory.

Figure: From R. Penrose’s On the Cohomology of Impossible Figures

Sheaf cohomology is used in Algebraic Geometry/Topology as a tool to
study the extendability from local to global.
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Goals

The cohomological study of contextuality was introduced by S.
Abramsky, S. Mansfield and R. Soares Barbosa (QPL 2011) with the
following results:

Cohomology obstructions in the first Čech cohomology group
provide a sufficient condition for contextuality in empirical
models.

This condition is not necessary: false positives arise (e.g. the
Hardy model).

Cohomology seems to correctly detect strong contextuality in all well
studied quantum models.

Our goal is to give an answer to the open questions left by this study:

Is the cohomological obstruction a full invariant for strong
contextuality under suitable assumptions on the measurement
scenario?

Can higher cohomology groups be used for the study of
contextuality?

Is there a concrete way of describing cohomological obstructions?
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The cohomology of contextuality

Start with an empirical model S : P(X )op → Set on a scenario
〈X ,M,O〉

“Abelianise” S to obtain a presehaf of abelian groups F
representing S. Typically:

F : P(X )op → Set
FZ−→ AbGrp,

which allows formal linear combinations of local sections.

Define Čech cohomology Ȟ∗(M,F) of F w.r.t. the cover M.

For each local section s ∈ S(C ), associate a cohomology
obstruction γC (s) ∈ Ȟ1(M,F |C )

S is cohomologically logically contextual at s, or CLC(S, s), iff
γC (s) 6= 0 (i.e. the obstruction does not vanish).

S is Cohomologically strongly contextual, or CSC(S) iff the
obstruction does not vanish for any section.

Theorem

CLC(S, s)⇒ LC(S, s), and CSC(S)⇒ SC(S)
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How powerful is cohomology?

Although Čech cohomology can occasionally fail to detect logical
contextuality as in the case of the Hardy model, it works particularly well
for strong contextuality:

It can successfully detect it in GHZ states, PR Boxes, the Peres-Mermin
“magic” square, all ¬GCD models and the whole class of models
admitting All-vs-Nothing arguments.

The only known example of a strongly contextual false positive is the
Kochen-Specker model for the cover

{A,B,C}, {B,D,E}, {C ,D,E}, {A,D,F}, {A,E ,G},

which “does not satisfy any reasonable criterion for symmetry, nor
does it satisfy any strong form of connectedness” and where “the
existence of measurements belonging to a single context [...]
seems to be crucial” [Abramsky et al. QPL 2011].
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How powerful is cohomology?

Conjecture (QPL 2011)

Under suitable assumptions of symmetry and connectedness of the cover,
the cohomology obstruction is a complete invariant for strong
contextuality.

Counterexample on a (2, 2, 4) Bell-type scenario
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Higher cohomology groups

The theory developed so far only involves the first Čech cohomology
group.

Can higher cohomology groups give us additional information?

Results

Obstructions can be generalised to higher, odd-dimensional
cohomology groups.

We can use the generalisation to define different “levels” of
cohomological contextuality.

These “levels” are organised in a hierarchy of logical implications.

The hierarchy cannot be used to study no-signalling empirical
models.
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group.

Can higher cohomology groups give us additional information?

Results

Obstructions can be generalised to higher, odd-dimensional
cohomology groups.

We can use the generalisation to define different “levels” of
cohomological contextuality.

These “levels” are organised in a hierarchy of logical implications.

The hierarchy cannot be used to study no-signalling empirical
models.



Higher cohomology groups

The theory developed so far only involves the first Čech cohomology
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Higher cohomology groups

The cohomology obstruction is constructed using a portion of the long
exact sequence of cohomology.

The first step consists of turning local sections at a context C ∈M into
relative cocycles, using the isomorphism ψ0

C : F(C )→ Z 0(M,F |C ):

S(C ) ↪→ F(C )
∼=−−→ Z 0(M,F |C ) ∼= Ȟ1(M,F |C )

γC−−−−→ Ȟ1(M,FC̃ ).

Then, the cohomology obstruction γC (s) is defined using the connecting
homomorphism of the cohomology LES.
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Higher cohomology groups

F(C )

Z 0(M,FC̃ ) Z 0(M,F) Z 0(M,F |C )

0 C 0(M,FC̃ ) C 0(M,F) C 0(M,F |C ) 0

0 Z 1(M,FC̃ ) Z 1(M,F) Z 1(M,F |C )

Ȟ1(M,FC̃ ) Ȟ1(M,F) Ȟ1(M,F |C )

ψ0
C

γ0C



Higher cohomology groups

It is possible to generalise the isomorphism

ψ0
C : F(C )

∼=−−→ Z 0(M,F |C )
incl.−−→ C 0(M,F |C )

to an injection in higher cohomology groups:

As a result, the obstruction is generalisable only in odd-dimensional
cohomology groups.
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F(C )
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Higher cohomology groups

Thus we obtain a refinement of the notion of cohomological
contextuality:

Definition

Let s ∈ F(C ). We define the q-th cohomological obstruction of s as
the element

γqC (s) := γ̃qC (ψ2q(s)) ∈ Ȟ2q+1(M,FC̃ ).

The empirical model S underlying F is defined to be

cohomologically logically q-contextual at a section s, or
CLCq(S, s), if γqC (s) 6= 0. We say that S is cohomologically
logically q-contextual if CLCq(S, s) for some section s.

cohomologically strongly q-contextual, or CSCq(S), if CLCq(S, s)
for all s.
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Higher cohomology groups

Theorem

These “levels” of contextuality are organised in the following hierarchy:

CSC(S) CSC1(S) . . . CSCq(S) CSCq+1(S) . . .

CLC(S) CLC1(S) . . . CLCq(S) CLCq+1(S) . . .

However, nothing is gained for no-signalling empirical models:

Proposition

No-signalling empirical models are cohomologically q-non-contextual for
any q 
 0.

It remains an open question to identify possible applications of the
hierarchy outside the framework of no-signalling models.
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Connecting homomorphism and first cohomology group

Many contextual properties of a model can be inferred by the properties
of the connecting homomorphism γ

γC : F(C ) −→ Ȟ1(M,F |C )

Proposition (Characterisation of Cohomological Strong Contextuality)

An empirical model is cohomologically strongly contextual if and only if
γC is injective for all C ∈M.

which allows us to give a lower bound on the cardinality of Ȟ1(M,F) in
the case of CSC models:

CSC(S)⇒ |Ȟ1(M,F |C )| ≥ |F(C )|

Proposition (Sufficient Condition for Strong Contextuality)

If there exists a C ∈M such that γC is injective, then the empirical
model is strongly contextual.
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An alternative description of the first cohomology group

One of the limits of Čech cohomology is that cohomology obstructions
are not easy to compute. All the examples produced so far have been
obtained by brute force enumeration of all the possible sections.

The main reason for this is that obstructions are defined by abstract
equations imposed by the rigid definition of cohomology, and we don’t
have a clear intuition of what exactly these objects are.

We present here a concrete description of the elements of the first
cohomology group Ȟ1.

The main ingredient are torsors relative to an abelian presheaf.
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An alternative description of the first cohomology group

Let F : Open(X )op → AbGrp be a presheaf of abelian groups over a
topological space X .

An F-presheaf is a presheaf of sets T over X equipped with a
morphism of presheaves φ : F × T ⇒ T such that, for each open
U ⊆ X , the map

φU : F(U)× T (U)→ T (U) :: (g , t) 7→ g·t
is a left action of F(U) on T (U).

Given two F-presheaves T and T ′, a morphism of F-presheaves
from T to T ′ is a morphism of presheaves ψ : T ⇒ T ′ such that ψU

is equivariant for all open U ⊆ X .

An F-presheaf T is called an F-torsor if
1 There exists an open cover V of X that trivialises T , i.e. such that

T (V ) 6= ∅ for all V ∈ V.
2 The action φU : F(U)× T (U)→ T (U) is simply transitive.



An alternative description of the first cohomology group

Let F : Open(X )op → AbGrp be a presheaf of abelian groups over a
topological space X .

An F-presheaf is a presheaf of sets T over X equipped with a
morphism of presheaves φ : F × T ⇒ T such that, for each open
U ⊆ X , the map

φU : F(U)× T (U)→ T (U) :: (g , t) 7→ g·t
is a left action of F(U) on T (U).

Given two F-presheaves T and T ′, a morphism of F-presheaves
from T to T ′ is a morphism of presheaves ψ : T ⇒ T ′ such that ψU

is equivariant for all open U ⊆ X .

An F-presheaf T is called an F-torsor if
1 There exists an open cover V of X that trivialises T , i.e. such that

T (V ) 6= ∅ for all V ∈ V.
2 The action φU : F(U)× T (U)→ T (U) is simply transitive.
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An alternative description of the first cohomology group

Let F be an abelian presheaf representing an empirical model S on a
scenario 〈X ,M,O〉.

Let

Trs(M,F) := {isomorphism classes of F-torsors trivialised by M} .

It can be shown that Trs(M,F) has a natural group structure, with the

trivial F-torsor UF : P(X )op
F−→ AbGrp

U−→ Set as neutral element.

Theorem

There is an isomorphism of groups

Trs(M,F) ∼= Ȟ1(M,F).

Despite their seemingly sophisticated definition, torsors are very simple
objects. Thus, this isomorphism allows us to concretely understand
cohomology obstructions.
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Despite their seemingly sophisticated definition, torsors are very simple
objects. Thus, this isomorphism allows us to concretely understand
cohomology obstructions.



An alternative description of the first cohomology group

Let F be an abelian presheaf representing an empirical model S on a
scenario 〈X ,M,O〉.
Let

Trs(M,F) := {isomorphism classes of F-torsors trivialised by M} .

It can be shown that Trs(M,F) has a natural group structure, with the

trivial F-torsor UF : P(X )op
F−→ AbGrp

U−→ Set as neutral element.

Theorem

There is an isomorphism of groups

Trs(M,F) ∼= Ȟ1(M,F).

Despite their seemingly sophisticated definition, torsors are very simple
objects. Thus, this isomorphism allows us to concretely understand
cohomology obstructions.



An alternative description of the first cohomology group

Let F be an abelian presheaf representing an empirical model S on a
scenario 〈X ,M,O〉.
Let

Trs(M,F) := {isomorphism classes of F-torsors trivialised by M} .

It can be shown that Trs(M,F) has a natural group structure, with the

trivial F-torsor UF : P(X )op
F−→ AbGrp

U−→ Set as neutral element.

Theorem

There is an isomorphism of groups

Trs(M,F) ∼= Ȟ1(M,F).
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Further directions

Main idea: formalise bundle diagram representation and study empirical
models as fiber bundles or, more generally fibrations.

Relative
extension problem from obstruction theory, which provides invariants
to the extension of local maps in a cohomology with coefficients in the
homotopy groups.

The theory of Postnikov towers is central in this approach.
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