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Latin square

Definition

A Latin square of order n is an n-by-n array of computational
basis vectors of C" such that every row and column is an
orthonormal basis.
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Quantum Latin squares

Definition

A quantum Latin square of order n is an n-by-n grid of elements
of the Hilbert space C", such that every row and column is an
orthonormal basis.




Quantum Latin squares

Definition

A quantum Latin square of order n is an n-by-n grid of elements

of the Hilbert space C", such that every row and column is an
orthonormal basis.

For example:

0) 1) 12) 3)
Z5(11) = 12)) | 7(110) +2]3)) | Z=(2[0) +i[3)) | Z5(11) +[2))
Z2(210) +i[3)) | Z(il0) +2[3)) | (1) —[2))

13) 2) 1) 0)




Orthogonal quantum Latin squares

Definition

A pair of quantum Latin squares are orthogonal when the
pointwise inner product of any row from one with any row from
the other yielding a single 1 and with the rest being 0.
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MUBs from orthogonal quantum Latin squares

Let P := &, Q := 4, be a pair of orthogonal quantum Latin

be indexed families of Hadamard matrices.
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The condition that &, and &, are orthogonal is equivalent to the
following linear map being a function on the computational
basis states:
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