Orthogonal Quantum Latin Squares and Mutually Unbiased Bases

Ben Musto

Department of Computer Science University of Oxford

9 June 2016

Latin square

Definition

A *Latin square of order n* is an *n*-by-*n* array of computational basis vectors of \mathbb{C}^n such that every row and column is an orthonormal basis.

Latin square

Definition

A *Latin square of order n* is an *n*-by-*n* array of computational basis vectors of \mathbb{C}^n such that every row and column is an orthonormal basis.

For example:

$ 0\rangle$	1>	2⟩	3>
$ 1\rangle$	$ 0\rangle$	3>	2⟩
2⟩	3>	0>	1>
3>	2⟩	1>	0>

Quantum Latin squares

Definition

A *quantum Latin square of order n* is an *n*-by-*n* grid of elements of the Hilbert space \mathbb{C}^n , such that every row and column is an orthonormal basis.

Quantum Latin squares

Definition

A *quantum Latin square of order n* is an *n*-by-*n* grid of elements of the Hilbert space \mathbb{C}^n , such that every row and column is an orthonormal basis.

For example:

0>	1>	2⟩	3⟩
$\frac{1}{\sqrt{2}}(1\rangle- 2\rangle)$	$\frac{1}{\sqrt{5}}(i 0\rangle+2 3\rangle)$	$\frac{1}{\sqrt{5}}(2 0\rangle+i 3\rangle)$	$\frac{1}{\sqrt{2}}(1\rangle+ 2\rangle)$
$\frac{1}{\sqrt{2}}(1\rangle+ 2\rangle)$	$\frac{1}{\sqrt{5}}(2 0\rangle+i 3\rangle)$	$\frac{1}{\sqrt{5}}(i 0\rangle+2 3\rangle)$	$rac{1}{\sqrt{2}}(\ket{1}-\ket{2})$
3⟩	2⟩	1>	$ 0\rangle$

Orthogonal quantum Latin squares

Definition

A pair of quantum Latin squares are orthogonal when the pointwise inner product of any row from one with any row from the other yielding a single 1 and with the rest being 0.

Orthogonal quantum Latin squares

Definition

A pair of quantum Latin squares are orthogonal when the pointwise inner product of any row from one with any row from the other yielding a single 1 and with the rest being 0.

For example:

0>	1>	2⟩	3>
1>	$ 0\rangle$	3>	2⟩
2⟩	3>	$ 0\rangle$	1>
3>	2⟩	1>	$ 0\rangle$

0>	2⟩	3>	1>
1>	3⟩	$ 2\rangle$	0⟩
2⟩	0>	$ 1\rangle$	3>
3>	1>	$ 0\rangle$	2⟩

MUBs from orthogonal quantum Latin squares

Let $\mathcal{P} := A$, $\mathcal{Q} := A$ be a pair of orthogonal quantum Latin squares, \mathcal{D} be the computational basis spider and H_j and G_q be indexed families of Hadamard matrices.

MUBs from orthogonal quantum Latin squares

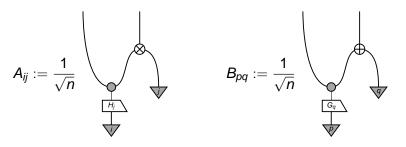
Let $\mathcal{P} := A$, $\mathcal{Q} := A$ be a pair of orthogonal quantum Latin squares, be the computational basis spider and H_j and G_q be indexed families of Hadamard matrices.

Then A_{ij} and B_{pq} as defined below are mutually unbiased.

MUBs from orthogonal quantum Latin squares

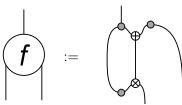
Let $\mathcal{P} := A_j$, $\mathcal{Q} := A_j$ be a pair of orthogonal quantum Latin squares, G be the computational basis spider and G_q be indexed families of Hadamard matrices.

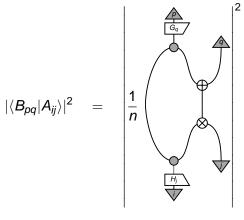
Then A_{ii} and B_{pq} as defined below are mutually unbiased.

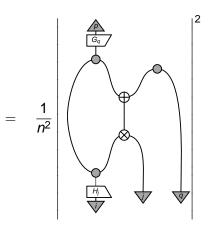


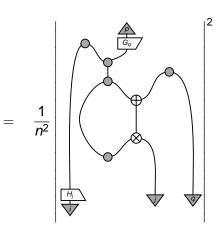
The condition that > and > are orthogonal is equivalent to the following linear map being a function on the computational basis states:

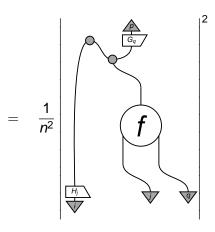
The condition that > and > are orthogonal is equivalent to the following linear map being a function on the computational basis states:

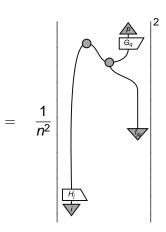


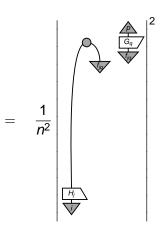












$$=\frac{1}{n^2}\left|\frac{\frac{1}{H_1}}{\frac{H_2}{H_2}}\right|^2$$

$$= \frac{1}{n^2} \left| \frac{1}{p_j} \frac{1}{p_j} \frac{1}{p_j} \right|^2$$

$$= \frac{1}{n^2} |(H_j)_{it} (G_q^{\dagger})_{tp}|^2$$

$$= \frac{1}{n^2} \left| \frac{\frac{1}{|H_j|}}{\sqrt{|H_j|}} \frac{\frac{1}{|G_q|}}{\sqrt{|G_q|}} \right|^2$$

$$= \frac{1}{n^2} |(H_j)_{it} (G_q^{\dagger})_{tp}|^2$$

$$= \frac{1}{n^2} 1^2$$

$$= \frac{1}{n^2} \left| \frac{1}{\frac{H_j}{M_j}} \frac{1}{\frac{G_q}{G_q}} \right|^2$$

$$= \frac{1}{n^2} |(H_j)_{it} (G_q^{\dagger})_{tp}|^2$$

$$= \frac{1}{n^2} 1^2$$

$$= \frac{1}{n^2}$$