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Nonlocal correlations

p(a, b|x , y) 6=
∑
λ

p(a|x , λ)p(b|y , λ)p(λ)

S = | 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 | ≥ 2

Tsirelson’s theorem (1980)

S = 2
√

2 is the maximum that can be achieved by QM. E.g. by
having Alice and Bob share |φ+〉 = (|00〉+ |11〉)/

√
2 and measure:

A0 = X , A1 = Z , B0 = (X + Z )/
√

2, B1 = (X − Z )/
√

2
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Rigidity

Reichardt Unger Vazirani [RUV] (2012)

Robust converse of Tsirelson’s theorem is also true.

S = | 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 | ≥ 2
√

2− ε

ρAB is the shared state of Alice and Bob

There exists a local isometry Φ = ΦA ⊗ ΦB

Φ(ρAB) ≈ |φ+〉 ⊗ |φ+〉 ⊗ ...⊗ |φ+〉 ⊗ |junk〉

Φ(A0) ≈ X Φ(A1) ≈ Z

Φ(B0) ≈ (X + Z )/
√

2 Φ(B1) ≈ (X − Z )/
√

2

Saturating nonlocal correlations determines state and strategy!
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Steering correlations

p(a, b|x , y) 6=
∑
λ

Tr(ρAB(λ)(Ea|x ⊗ I ))p(b|y , λ)p(λ)

S = | 〈A0B0〉+ 〈A1B1〉 | ≥
√

2

Theorem

S = 2 is the maximum that can be achieved. E.g. by having Alice
and Bob share |φ+〉 = (|00〉+ |11〉)/

√
2 and measure:

A0 = X , A1 = Z , B0 = X , B1 = Z

Our main result: Converse is also true!
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Assumptions

Quantum mechanics is true/correct
(no supra-quantum correlations)

Alice is trusted to measure anticommuting A0 and A1

(e.g. A0 = X , A1 = Z )

Bob is untrusted. Measures B ′
0 and B ′

1

Observables have 2 outcomes ±1 and are also unitary

Shared state ρAB , prepared by Bob (untrusted)

In each round Alice and Bob measure the same state |ψ〉
(i.i.d.)
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Self-testing i.i.d. states

|
〈
A0B ′

0

〉
+
〈
A1B ′

1

〉
| ≥ 2− ε (1)

I.i.d. self-testing theorem

If inequality 1 is satisfied, then there exists a local isometry
Φ = I ⊗ ΦB such that, for all MA ∈ {I ,A0,A1}, N ′

B ∈ {I ,B ′
0,B

′
1}:

||Φ(MAN ′
B |ψ〉)− |junk〉MANB |φ+〉 || ≤ O(

√
ε)

Cannot do better than O(
√
ε)!
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Removing i.i.d.

|
〈
A0B ′

0

〉
+
〈
A1B ′

1

〉
| ≥ 2− ε (1)

Non-i.i.d. self-testing theorem

If inequality 1 is satisfied, then there exists a local isometry
Φ = I ⊗ ΦB such that, for EAB′ having the role of MA, N ′

B from
before, we have for a randomly chosen ρi :

||Φ(EAB′(ρi ))− EAB(|φ+〉 〈φ+|)|| ≤ O(ε1/6)
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State and strategy determination

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

Sreal = (ρAB , EA, E ′B) denotes the real strategy

Sideal = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA, EB) denotes the ideal strategy

Sguess = (ρAB , EA,GB) denotes a guessing strategy

S ′guess = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA,GB) second guessing strategy

S is ε-structured ↔ observed correlation is greater than 2− ε

S1 ≈ S2 ↔ ρ1 ≈ ρ2, EA,1 ≈ EA,2, EB,1 ≈ EB,2

Objective: Sreal ≈ Sideal
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State and strategy determination

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

Sreal = (ρAB , EA, E ′B) denotes the real strategy

Sideal = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA, EB) denotes the ideal strategy

Sguess = (ρAB , EA,GB) denotes a guessing strategy

S ′guess = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA,GB) second guessing strategy

S is ε-structured ↔ observed correlation is greater than 2− ε

S1 ≈ S2 ↔ ρ1 ≈ ρ2, EA,1 ≈ EA,2, EB,1 ≈ EB,2

Objective: Sreal ≈ Sideal

Alexandru Gheorghiu, Petros Wallden, Elham Kashefi [arXiv:1512.07401] 8 / 17



State and strategy determination

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

Sreal = (ρAB , EA, E ′B) denotes the real strategy

Sideal = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA, EB) denotes the ideal strategy

Sguess = (ρAB , EA,GB) denotes a guessing strategy

S ′guess = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA,GB) second guessing strategy

S is ε-structured ↔ observed correlation is greater than 2− ε

S1 ≈ S2 ↔ ρ1 ≈ ρ2, EA,1 ≈ EA,2, EB,1 ≈ EB,2

Objective: Sreal ≈ Sideal

Alexandru Gheorghiu, Petros Wallden, Elham Kashefi [arXiv:1512.07401] 8 / 17



State and strategy determination

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

Sreal = (ρAB , EA, E ′B) denotes the real strategy

Sideal = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA, EB) denotes the ideal strategy

Sguess = (ρAB , EA,GB) denotes a guessing strategy

S ′guess = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA,GB) second guessing strategy

S is ε-structured ↔ observed correlation is greater than 2− ε

S1 ≈ S2 ↔ ρ1 ≈ ρ2, EA,1 ≈ EA,2, EB,1 ≈ EB,2

Objective: Sreal ≈ Sideal

Alexandru Gheorghiu, Petros Wallden, Elham Kashefi [arXiv:1512.07401] 8 / 17



State and strategy determination

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

Sreal = (ρAB , EA, E ′B) denotes the real strategy

Sideal = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA, EB) denotes the ideal strategy

Sguess = (ρAB , EA,GB) denotes a guessing strategy

S ′guess = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA,GB) second guessing strategy

S is ε-structured ↔ observed correlation is greater than 2− ε

S1 ≈ S2 ↔ ρ1 ≈ ρ2, EA,1 ≈ EA,2, EB,1 ≈ EB,2

Objective: Sreal ≈ Sideal

Alexandru Gheorghiu, Petros Wallden, Elham Kashefi [arXiv:1512.07401] 8 / 17



State and strategy determination

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

Sreal = (ρAB , EA, E ′B) denotes the real strategy

Sideal = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA, EB) denotes the ideal strategy

Sguess = (ρAB , EA,GB) denotes a guessing strategy

S ′guess = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA,GB) second guessing strategy

S is ε-structured ↔ observed correlation is greater than 2− ε

S1 ≈ S2 ↔ ρ1 ≈ ρ2, EA,1 ≈ EA,2, EB,1 ≈ EB,2

Objective: Sreal ≈ Sideal

Alexandru Gheorghiu, Petros Wallden, Elham Kashefi [arXiv:1512.07401] 8 / 17



State and strategy determination

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

Sreal = (ρAB , EA, E ′B) denotes the real strategy

Sideal = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA, EB) denotes the ideal strategy

Sguess = (ρAB , EA,GB) denotes a guessing strategy

S ′guess = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA,GB) second guessing strategy

S is ε-structured ↔ observed correlation is greater than 2− ε

S1 ≈ S2 ↔ ρ1 ≈ ρ2, EA,1 ≈ EA,2, EB,1 ≈ EB,2

Objective: Sreal ≈ Sideal

Alexandru Gheorghiu, Petros Wallden, Elham Kashefi [arXiv:1512.07401] 8 / 17



State and strategy determination

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

Sreal = (ρAB , EA, E ′B) denotes the real strategy

Sideal = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA, EB) denotes the ideal strategy

Sguess = (ρAB , EA,GB) denotes a guessing strategy

S ′guess = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA,GB) second guessing strategy

S is ε-structured ↔ observed correlation is greater than 2− ε

S1 ≈ S2 ↔ ρ1 ≈ ρ2, EA,1 ≈ EA,2, EB,1 ≈ EB,2

Objective: Sreal ≈ Sideal

Alexandru Gheorghiu, Petros Wallden, Elham Kashefi [arXiv:1512.07401] 8 / 17



State and strategy determination

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

Sreal = (ρAB , EA, E ′B) denotes the real strategy

Sideal = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA, EB) denotes the ideal strategy

Sguess = (ρAB , EA,GB) denotes a guessing strategy

S ′guess = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA,GB) second guessing strategy

S is ε-structured ↔ observed correlation is greater than 2− ε

S1 ≈ S2 ↔ ρ1 ≈ ρ2, EA,1 ≈ EA,2, EB,1 ≈ EB,2

Objective: Sreal ≈ Sideal

Alexandru Gheorghiu, Petros Wallden, Elham Kashefi [arXiv:1512.07401] 8 / 17



State and strategy determination

Suppose we do K rounds of measurement to certify one Bell state.

Do NK rounds of measurement certify N states?

Not implicitly, because of overlap/adaptiveness!

Sreal = (ρAB , EA, E ′B) denotes the real strategy

Sideal = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA, EB) denotes the ideal strategy

Sguess = (ρAB , EA,GB) denotes a guessing strategy

S ′guess = (|φ+〉 ⊗ ...⊗ |φ+〉 , EA,GB) second guessing strategy

S is ε-structured ↔ observed correlation is greater than 2− ε

S1 ≈ S2 ↔ ρ1 ≈ ρ2, EA,1 ≈ EA,2, EB,1 ≈ EB,2

Objective: Sreal ≈ Sideal

Alexandru Gheorghiu, Petros Wallden, Elham Kashefi [arXiv:1512.07401] 8 / 17



State and strategy determination - Proof sketch
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State and strategy determination - Proof sketch
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Application: verification of quantum computation

Computationally limited, trusted verifier

Powerful, untrusted quantum server(s)

Alice = verifier, Bob = server
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Conclusions

Saturating correlations ↔ ideal states and measurements

I.i.d. self-testing → Non-i.i.d. self-testing → Rigidity

Lower bounded Ω(
√
ε) closeness

Tight bounds for non-i.i.d. and rigidity?

Most natural application is quantum verification
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