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The Plan

Find connections between:

I General probabilistic theories

I Categorical approaches, particularly effectus theory.

Formalise operational theories of physics, and study them categorically.

Composable systems and events Symmetric monoidal category
Tests, classical data Coproducts

Causality Discard maps / Terminal object

Establish correspondence between operational categories and theories.
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Operational Theories

An operational theory with control (OTC) Θ:

I Systems A,B,C , . . .

I Events f : A→ B, composition A⊗ B, g ◦ f , f ⊗ g , trivial system I .
i.e. forming a symmetric monoidal category:

C

E F

A

g

f
B

ρ

D

e

I Tests {fx : A→ Bx}x∈X , X = finite outcome set
Call subsets {fy}y∈Y ⊆ {fx}x∈X partial tests.

I Coarse-graining: Partial ‘addition’ f > g : A→ B on events.
{fx : A→ B}x∈X ∪ {gy}y∈Y =⇒ {

Ŕ
x∈X fx} ∪ {gy}y∈Y
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Assumptions of an OTC

Impossible events: zero arrows 0A,B : A→ B with f > 0 = f .

Control: when {fx : A→ Bx}x∈X and {g(x , y) : Bx → Cx ,y}y∈Yx for
x ∈ X are tests, so is{

A Bx Cx ,y
fx g(x , y)

}
x∈X ,y∈Yx

Causality: unique deterministic effect A : A→ I , i.e. { A} a test.
Every event f has unique effect e with {f , e} a test.

Don’t assume scalars p : I → I are probabilitites p ∈ [0, 1].

Examples

Many! Classical: deterministic or probabilistic.
Quantum: Hilbert spaces or C*-algebras and c.p. sub-unital maps.
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From Theories to Categories

Encode outcome sets X ‘in the systems’.

Θ has direct sums when ∀ {Bx}x∈X ∃ test {.x : B → Bx}x∈X s.t:

partial tests {fx : A→ Bx}x∈X
f : A→ B with .x ◦ f = fx

B = “
⊕

x∈X Bx”

Direct sum completion Θ+ has EventΘ+ = ParTest(Θ):

I systems (Ax)x∈X
I events M : (Ax)x∈X → (By )y∈Y are X -indexed partial tests
{M(x , y) : Ax → By}y∈Y

Categorically, direct sums are finite coproducts (+, 0):

Bi B1 + ...+ Bn =
⊕n

k=1 Bk Bj
κi .j

, .j◦κi =

{
id i = j
0 i 6= j
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Operational Categories, in Partial Form

Partial tests: {fi : A→ Bi}ni=1 ⇐⇒ f : A→ B1 + ...+ Bn s.t. .i ◦ f = fi .
Tests: when f is causal/total, meaning ◦ f = .

Coarse-graining:
Ŕn

i=1 fi = A B + . . .+ B Bf O

Theorem
OTC Θ with direct sums ⇐⇒ operational category in partial form (C, ):

SMC (C,⊗) with finite coproducts, zero object and family A : A→ I s.t:

I .i : A1 + ...+ An → Ai jointly monic

I ∀f : A→ B ∃! total g : A→ B + I with f = .1 ◦ g
I ⊗ distributes over +

I A+B = [ A, B ], I = id, A⊗B = λ ◦ ( A ⊗ B)



Operational Categories, in Partial Form

Partial tests: {fi : A→ Bi}ni=1 ⇐⇒ f : A→ B1 + ...+ Bn s.t. .i ◦ f = fi .

Tests: when f is causal/total, meaning ◦ f = .

Coarse-graining:
Ŕn

i=1 fi = A B + . . .+ B Bf O

Theorem
OTC Θ with direct sums ⇐⇒ operational category in partial form (C, ):

SMC (C,⊗) with finite coproducts, zero object and family A : A→ I s.t:

I .i : A1 + ...+ An → Ai jointly monic

I ∀f : A→ B ∃! total g : A→ B + I with f = .1 ◦ g
I ⊗ distributes over +

I A+B = [ A, B ], I = id, A⊗B = λ ◦ ( A ⊗ B)



Operational Categories, in Partial Form

Partial tests: {fi : A→ Bi}ni=1 ⇐⇒ f : A→ B1 + ...+ Bn s.t. .i ◦ f = fi .
Tests: when f is causal/total, meaning ◦ f = .

Coarse-graining:
Ŕn

i=1 fi = A B + . . .+ B Bf O

Theorem
OTC Θ with direct sums ⇐⇒ operational category in partial form (C, ):

SMC (C,⊗) with finite coproducts, zero object and family A : A→ I s.t:

I .i : A1 + ...+ An → Ai jointly monic

I ∀f : A→ B ∃! total g : A→ B + I with f = .1 ◦ g
I ⊗ distributes over +

I A+B = [ A, B ], I = id, A⊗B = λ ◦ ( A ⊗ B)



Operational Categories, in Partial Form

Partial tests: {fi : A→ Bi}ni=1 ⇐⇒ f : A→ B1 + ...+ Bn s.t. .i ◦ f = fi .
Tests: when f is causal/total, meaning ◦ f = .

Coarse-graining:
Ŕn

i=1 fi = A B + . . .+ B Bf O

Theorem
OTC Θ with direct sums ⇐⇒ operational category in partial form (C, ):

SMC (C,⊗) with finite coproducts, zero object and family A : A→ I s.t:

I .i : A1 + ...+ An → Ai jointly monic

I ∀f : A→ B ∃! total g : A→ B + I with f = .1 ◦ g
I ⊗ distributes over +

I A+B = [ A, B ], I = id, A⊗B = λ ◦ ( A ⊗ B)



Operational Categories, in Partial Form

Partial tests: {fi : A→ Bi}ni=1 ⇐⇒ f : A→ B1 + ...+ Bn s.t. .i ◦ f = fi .
Tests: when f is causal/total, meaning ◦ f = .

Coarse-graining:
Ŕn

i=1 fi = A B + . . .+ B Bf O

Theorem
OTC Θ with direct sums ⇐⇒ operational category in partial form (C, ):

SMC (C,⊗) with finite coproducts, zero object and family A : A→ I s.t:

I .i : A1 + ...+ An → Ai jointly monic

I ∀f : A→ B ∃! total g : A→ B + I with f = .1 ◦ g
I ⊗ distributes over +

I A+B = [ A, B ], I = id, A⊗B = λ ◦ ( A ⊗ B)



Operational Categories, in Partial Form

Partial tests: {fi : A→ Bi}ni=1 ⇐⇒ f : A→ B1 + ...+ Bn s.t. .i ◦ f = fi .
Tests: when f is causal/total, meaning ◦ f = .

Coarse-graining:
Ŕn

i=1 fi = A B + . . .+ B Bf O

Theorem
OTC Θ with direct sums ⇐⇒ operational category in partial form (C, ):

SMC (C,⊗) with finite coproducts, zero object and family A : A→ I s.t:

I .i : A1 + ...+ An → Ai jointly monic

I ∀f : A→ B ∃! total g : A→ B + I with f = .1 ◦ g
I ⊗ distributes over +

I A+B = [ A, B ], I = id, A⊗B = λ ◦ ( A ⊗ B)



Operational Categories, in Partial Form

Partial tests: {fi : A→ Bi}ni=1 ⇐⇒ f : A→ B1 + ...+ Bn s.t. .i ◦ f = fi .
Tests: when f is causal/total, meaning ◦ f = .

Coarse-graining:
Ŕn

i=1 fi = A B + . . .+ B Bf O

Theorem
OTC Θ with direct sums ⇐⇒ operational category in partial form (C, ):

SMC (C,⊗) with finite coproducts, zero object and family A : A→ I s.t:

I .i : A1 + ...+ An → Ai jointly monic

I ∀f : A→ B ∃! total g : A→ B + I with f = .1 ◦ g
I ⊗ distributes over +

I A+B = [ A, B ], I = id, A⊗B = λ ◦ ( A ⊗ B)



Operational Categories, in Partial Form

Partial tests: {fi : A→ Bi}ni=1 ⇐⇒ f : A→ B1 + ...+ Bn s.t. .i ◦ f = fi .
Tests: when f is causal/total, meaning ◦ f = .

Coarse-graining:
Ŕn

i=1 fi = A B + . . .+ B Bf O

Theorem
OTC Θ with direct sums ⇐⇒ operational category in partial form (C, ):

SMC (C,⊗) with finite coproducts, zero object and family A : A→ I s.t:

I .i : A1 + ...+ An → Ai jointly monic

I ∀f : A→ B ∃! total g : A→ B + I with f = .1 ◦ g

I ⊗ distributes over +

I A+B = [ A, B ], I = id, A⊗B = λ ◦ ( A ⊗ B)



Operational Categories, in Partial Form

Partial tests: {fi : A→ Bi}ni=1 ⇐⇒ f : A→ B1 + ...+ Bn s.t. .i ◦ f = fi .
Tests: when f is causal/total, meaning ◦ f = .

Coarse-graining:
Ŕn

i=1 fi = A B + . . .+ B Bf O

Theorem
OTC Θ with direct sums ⇐⇒ operational category in partial form (C, ):

SMC (C,⊗) with finite coproducts, zero object and family A : A→ I s.t:

I .i : A1 + ...+ An → Ai jointly monic

I ∀f : A→ B ∃! total g : A→ B + I with f = .1 ◦ g
I ⊗ distributes over +

I A+B = [ A, B ], I = id, A⊗B = λ ◦ ( A ⊗ B)



Operational Categories, in Total Form

So Θ+ is determined by C = ParTest(Θ) = EventΘ+ .
In fact, B = Test(Θ) = Ctotal suffices.

An operational category in total form B is an SMC with finite coproducts
(+, 0) distributed over by ⊗, s.t. I is a terminal object 1 and:

I the canonical maps (A1 + . . .+ An) + 1→ Ai + 1 are jointly monic

I the following are pullbacks:

A 1

A + 1 1 + 1

!

κ1 κ1

!+!

Weakening of notion of monoidal effectus (Jacobs et al.).
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Why Operational Categories?

Operational interpretation of effectus theory.

Connections: categorical quantum mechanics ↔ GPTs.

Separate the ‘layers’ of operational theories:

I Composition (◦,⊗) ∼ symmetric monoidal categories;

I Control ({fx}x∈X ,>) ∼ operational categories;

I Probabilities.

Next: translate quantum reconstruction theorems into categorical form.

Thanks!
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