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Establish correspondence between operational categories and theories.
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Operational Theories

An operational theory with control (OTC) ©:
» Systems A, B, C, ...

» Events f: A— B, composition A® B, gof, f ® g, trivial system /.
i.e. forming a symmetric monoidal category:

» Tests {f: A— By}xex, X = finite outcome set
Call subsets {f,} ey C {fc}xex partial tests.

» Coarse-graining: Partial 'addition’ f @ g: A — B on events.
{fc: A= Bhiex U{gytyey = {Quex KU {8 }tyev
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Assumptions of an OTC

Impossible events: zero arrows 0pg: A — B with f @0 = f.

Control: when {f.: A = Bx}xex and {g(x,y): Bx = Csy}yev, for
x € X are tests, so is

3 g(x,y) }
{ A Bx vay x€EX,y€ Yy

Causality: unique deterministic effect £4: A — I, i.e. {%a} a test.
Every event f has unique effect e with {f, e} a test.

Don't assume scalars p: | — | are probabilitites p € [0, 1].

Examples

Many! Classical: deterministic or probabilistic.
Quantum: Hilbert spaces or C*-algebras and c.p. sub-unital maps.
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From Theories to Categories

Encode outcome sets X ‘in the systems'.

© has direct sums when V {By}xex 3 test {>x: B — By}xex s.t:

partial tests {f,: A — Byx}xex
f:A— Bwith>,of =1

B ="@xex B

Direct sum completion ©* has Eventg+ = ParTest(0):

> systems (Ax)xex
» events M: (Ay)xex — (By)yey are X-indexed partial tests
{M(Xa)/): AX - By}yEY

Categorically, direct sums are finite coproducts (+,0):

id

. >j
B, — Bl+...+3n=@2213kij> B; , Djon,-:{ 0

i=j
i
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Operational Categories, in Partial Form

Partial tests: {fi: A—= Bj}7 ; <= f: A= Bi+..+B,st.pjof =f.
Tests: when f is causal/total, meaning £ o f = .

Coarse-graining: Qi_,;fi= A s B+...+B—> B

Theorem
OTC © with direct sums <= operational category in partial form (C,%):
SMC (C, ®) with finite coproducts, zero object and family $4: A — [ s.t:
> >t Ay + ... + A, — A; jointly monic
> Vf: A— B Jltotal g: A= B+ 1/ withf=pj0g
> ® distributes over +

> 24 = [%4, 48], 3+ =1d, 2498 = Ao (4 @ £5B)
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Operational Categories, in Total Form

So ©1 is determined by C = ParTest(©) = Eventg-.
In fact, B = Test(©) = Ciotal suffices.

An operational category in total form B is an SMC with finite coproducts
(+,0) distributed over by ®, s.t. | is a terminal object 1 and:

» the canonical maps (A1 + ...+ A,) +1 — A; + 1 are jointly monic

A—1 1
> the following are pullbacks: ml lm

A—l—lﬁl-i—l

Weakening of notion of monoidal effectus (Jacobs et al.).
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Operational interpretation of effectus theory.
Connections: categorical quantum mechanics <> GPTs.

Separate the ‘layers’ of operational theories:
» Composition (o, ®) ~ symmetric monoidal categories;
» Control ({fi}xex,@) ~ operational categories;
> Probabilities.

Next: translate quantum reconstruction theorems into categorical form.

Thanks!



