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Computational structures in Hilbert space

Which fundamental

computational structures
exist in Hilbert space?

Two criteria:

e Must specify a classical input structure, a classical output
structure, and a function computed.

e Must be genuinely quantum.



Hidden variables and the two theorems of John Bell

N. David Mermin
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Although skeptical of the prohibitive power of no-hidden-variables theorems, John Bell was himself re-
sponsible for the two most important ones. I describe some recent versions of the lesser known of the two
(familiar to experts as the “Kochen-Specker theorem”) which have transparently simple proofs. One of
the new versions can be converted without additional analysis into a powerful form of the very much
better known “Bell’s Theorem,” thereby clarifying the conceptual link between these two results of Bell.
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that he can restate the position with such clarity and

implicity that all previ Ji ions will be eclipsed.
J. S. Bell, 1966

|. THE DREAM OF HIDDEN VARIABLES

It is a fundamental quantum doctrine that a measure-
ment does not, in general, reveal a preexisting value of
the measured property. On the contrary, the outcome of
a measurement is brought into being by the act of mea-
surement itself, a joint manifestation of the state of the
probed system and the probing apparatus. Precisely how
the particular result of an individual measurement is
brought into being—Heisenberg’s “transition from the
possible to the actual” —is inherently unknowable. Only
the statistical distribution of many such encounters is a
proper matter for scientific inquiry.

We have been told this so often that the eyes glaze over
at the words, and half of you have probably stopped
reading already. But is it really true? Or, more conser-
vatively, is it really necessary? Does quantum mechan-
ics, that powerful, practical, phenomenally accurate com-
putational tool of physicist, chemist, biologist, and en-
gineer, really demand this weak link between our
knowledge and the objects of that knowledge? Setting
aside the metaphysics that emerged from urgent debates
and long walks in Copenhagen parks, can one point to
anything in the modern quantum theory that forces on us
such an act of intellectual renunciation? Or is it merely
reverence for the Patriarchs that leads us to deny that a
measurement reveals a value that was already there, prior
to the measurement?

Well, you might say, it’s easy enough to deduce from
quantum mechanics that in general the measurement ap-
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Computational Power of Correlations
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We study the intrinsic computational power of correlations exploited in measurement-based quantum
computation. By defining a general framework, the meaning of the computational power of correlation:
made precise. This leads to a notion of resource states for based classical putation.
Surprisingly, the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge as
optimal examples. Our work exposes an intriguing relationship between the violation of local realistic

models and the ional power of led resource states.
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Contextuality, Cohomology & Computation
|

Abramsky et al. Anders & Browne
. Ea Howard et al. ‘
Cohomology Contextuality Quantum
Computation

What happens if we combine
those two links?



Results

B Introduce a cohomological framework for MBQC, based
on the notion of a phase function.

The phase function ® has the following properties:

— It is a 1-chain in group cohomology.
— Contains the output function.

— d® #= 0 is a witness for contextuality.

e For any G-MBQC, there is a non-contextuality inequality
which bounds the cost of classical function evaluation.

e G-MBQCs classifiable by group cohomology: H?2(G, N).



Outline

1. Review: Contextuality and measurement-based quantum
computation (MBQQC)

2. Cohomological formulation of MBQC
3. Ramifications of cohomology: contextuality/computation

4. Summary & open questions



Contextuality and MBQC

e Review: Contextuality and MBQC
o G-MBQC




Quantum computation by measurement

© © ©

circuit time

e Information written onto a cluster state, processed and
read out by one-qubit measurements only.

e T he resulting computational scheme is universal.

R. Raussendorf and H.-J. Briegel, PRL 86, 5188 (2001).



Contextuality of QM

What is a nhon-contextual hidden-variable model?

quantum mechanics hidden-variable model

Y

4

A measured= output A,

B measured= output A,
C measured= output A

Noncontextuality: Given observables A,B,C: [A,B] = [A,C] = O:
A4 is independent of whether A is measured jointly with B or C.

Theorem [Kochen, Specker]: For dim(H) > 3, quantum-mechanics
cannont be reproduced by a non-contextual hidden-variable model.



Simplest example: Mermin’s star

MY,)

/\

A(XXX) ) (XYY )= (YXY )m—"— ) (YYX)
P ®
Mx1) MY,)

S \\

Is there a consistent value
assignment \(-) = +1 for
all observables in the star?

e NoO consistent non-contextual value assignment A\ exists.

Any attempt to assign values leads to an algebraic contradiction.

N.D. Mermin, RMP 1992.



Simplest example: Mermin’s star

M) GHZ-state

Mermin's star has a state-
dependent version, invok-

MY.
M o P ¥3) ing a GHZ-state.
I\

e Still no consistent value assignment A for the remaining local
observables.

N.D. Mermin, RMP 1992.



Mermin’s star computes

output s | GHZ-state
6 0=1 OR ] e Measurement contexts are
assigned input values.

e Classical pre- and post-
processing is mod 2 linear.

// \\ e Outputted OR-gate s

Cy O \C;O non-linear.

e Extremely limited classical control computer is boosted to
classical universality.

J. Anders and D. Browne, PRL 20009.



output resource state
g . e All observables T € $24
inferred

MT(h) MT()  MT(ch T have eigenvalues +1 only.

m measurable e Input values are elements

N/Observablesz (9+ of a group G.
V)

Measurement context C(g), given the input g € G:

C(g) = {u(g)Tau(g)', Ta € C(e)}.




Why this generalization?
]

e Some constraint on input set is required.
Otherwise: Can put enormous computational power into the
relation between input values and measurement contexts.

o G-MBQC contains standard MBQC as a special case.

Mind the specialization:

e Present analysis for temporally flat MBQCs only.

This setting we call G-MBQC




G-MBQC and the phase function

(a) The phase function &
(b) Physical and computational ramifications




The phase function ¢

Recall the observables of interest:

e Measurable observables T, € O
e Inferable observables T'(g), g € G
— All of those: Q4 = {Tg, a € A}.

All admissible resource states p satisfy a symmetry condition:

(Tga)p = (_1)<l>g(a) (Tu)p, Ya € A.

Therein, Tyq := gTag’, and @ is the phase function.

(1)




The phase function ¢

All admissible resource states p satisfy a symmetry condition:

(Tya)p = (_1)Cbg(a) (Ta)p, Ya € A.

Therein, Tyq := gTag', and @ is the phase function.

e Check the GHZ case!

e The invariance condition Eq. (1) is satisfied for all G-MBQCs
on stabilizer states which have uniform success probability.




The phase function ¢

The phase function @& is a 1-chain in group cohomology,

b:G—V.

V: module of consistent flips of observables

Ty — (=YD T, veVv
that preserve all product relations among commuting observ-
ables.
Linearity of &: For all T,, T}, T, with [T,,T;] = 0 and T, = +7,T}, it holds that
P,(c) = Py(a) + Py(b) mod 2, Vg€ G.



Ramifications of the cohomological
framework

(a) Phase function and computation
(b) Cohomology and contextuality
(c) Contextuality and speedup



Phase function and computation

output gbe

inferred
MT(e)) MT(g) outcomes

\ measurable

Xobservables O,
e Consider output observables T, = T'(g). b
e Deterministic case (for simplicity): (Typ,)p = (—1)°() g
Recall the symmetry condition: (Tga)p = (—1)¢9(a)<Ta>p, Va € A.

Hence, the output function o: G — Z»> is

o(g) = Pg(be) +o(e) | (2)

Phase function specifies output up to additive constant O\/



Cohomology and contextuality
.

Which phase functions are compatible with non-contextual hid-
den variable models (ncHVMs)?

Proposition 1. For any G-MBQC M, if for all phase functions
$ satisfying the output relation o(g) = P4(be) + ¢ it holds that
d® #£ 0, then M is contextual.



The group compatibility condition

Recall: | (Tgya)p = (—1)"’9(@)(Ta>p, Va € A|.

Multiplication is compatible: (Tyna)p = (T yn)a)p = Ty(ha))p

This implies:
(~1) PN Ty), = (~1) DT Pslhad(T,),
which can be satisfied in two ways. Either
(Ta)p =0, or
oy (a) + Pg(ha) — Py p(a) mod2=0| (3)

Eqa. (3) is the group compatibility condition. May be written as

(dcb)g,h(a) = 0.



Cohomology and contextuality
|

Proposition 1. For any G-MBQC M, if for all phase functions
® satisfying the output relation o(g) = Pgy(be) + ¢ it holds that
d® #£ 0, then M is contextual.

Proof: 4 ncHVM —= 4 consistent value assignment s
Define a phase function ®(5) via <l>§3)(a) .= s(ga) — s(a) mod 2.
o () satisfies the output relation o(g) = Py(be) +¢, & dP =0. O

oV

The phase function contains a witness of quantumness



Symmetry-based contextuality proof for M’s star
e

Recall: X1X2X3|\U> = —X1Y2Y3|\U> = —Y1X2Y3|\U> = —Y1Y2X3|\U> = |\U>
Consider: G 3 g which transforms X; < Y1, Xo «< Y3, X3 0, Y3 O.

With the above eigenvalue equations we then have

P (axxx) =1, Py(ayxy) =0.
By linearity of &, on commuting observables (definition of V),

P (axxx) = Pylax,) + Pylax,) + Pylax,),
clDg(afYXY) — (Dg(aYl) + q)g(aXz) + (bg(aYa)a

where addition is mod 2. Adding those and using the former equation,

1 = ®y(ax,) + Py(ax,) + Pylay;) + Pyay,).
The r.h.s. can be rewritten as a sum of coboundaries

1 — (dcb)glo,gm(a’Xl) + (dcb)gohgm(a'Xl) + (dcb)gm,gm(a’Xs)a
with go1, g10 € G.

Hence, d® £ 0. With Prop 1., the state dependent Mermin star is contextual.



Contextuality and speedup
]

Proposition 2. The classical computational cost C5s5 Of re-
ducing the evaluation a function o: G — Z, to the evaluation of
o : G — Z» compatible with an ncHVM is bounded by the max-
imum violation A(o)max of a logical non-contextuality inequality

Celass < A(O)ImaX-

Remark: The trivial function o can be computed by the CC without any

quantum resources, with memory of size |O4]|.

Speedup requires significant room A(o) for violation of the logical
contextuality inequality.



Summary

The following holds for all temporally flat G-MBQCs:

e T he phase function is a 1-cochain in group cohomology.

It describes what's being computed, and provides a withess
for quantumness.

e For each G-MBQC exists a non-contextuality inequality that
upper-bounds the hardness of classical function evaluation.

e G-MBQCs classifiable by group cohomology: H2(G, N).

arXiv:1602.04155



The next questions
]

e How do the above results extend to the temporally ordered
case”?

e Group cohomology has entered MBQC in a different vein,
namely via “computational phases of matter”. Is there a
physical relation?

e Is there a quantum computational paradigm that relates to
contextuality in the same way as ‘“‘quantum parallelism” re-
lates to superposition and interference?

arXiv:1602.04155



Additional material




Contextuality and speedup
|

The quantity

W(0)p i= Tgea(l + (=1)°WN(T(g))))/2

IS a contextuality witnhesses.

e Maximum QM value: max(W(o)) = |G|.

e Maximum HVM value: max(W(o)) = |G| — A(o0), with

A(0) = Mingcg <Wt(0 D 03)). (4)



