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Yes!
1. Stinespring has a universal property.

2. Paschke’s 1973 factorization for

arbitrary processes ϕ : A → B also has

this universal property.

3. Thus (surprisingly): Paschke is a

generalization of Stinespring.
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Sketch construction P

On algebraic tensor A �B, define

[a ⊗ b, α⊗ β]ϕ := b∗ϕ(a∗α)β.

Nϕ := {x ; x ∈ A ⊗B; [x , x ] = 0}
X0 := A �B/Nϕ and X := X0

X is Hilbert C∗-module over B
A ⊗ϕ B := X ′0 self-dual Hilbert C∗-module

P := Ba(A ⊗ϕ B) bounded modulemaps

%(α)a ⊗ b = (αa)⊗ b and

h(T ) = 〈T1⊗ 1, 1⊗ 1〉ϕ
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projection p ∈P and isomorphism ϑ : pPp → B.)
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Paschke dilation is componentwise

minimal Stinespring.
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I A
Cp(·)Cp //CpA Cp

p(·)p
// pA p is

the Paschke dilation of the

corner h : A → pA p, x 7→ pxp
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pure.

Clearly AdV : B(H )→ B(K ) should be

pure with Ad†V = AdV ∗
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Pure and Paschke

With A
% //P h //B Paschke dilation ϕ

I h is pure

I ϕ is pure if and only if % surjection

I Pure processes are extreme among

processes with the same value on 1

I (To be published: there is a unique* dagger on

pure maps.)
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