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Introduction

I unified framework for non-locality and contextuality in general
measurement scenarios

I qualitative hierarchy of contextuality for empirical models

I quantitative grading – measure of contextuality

Why?

I Comparing degree of contextuality of empirical models

I . . . and across different scenarios

I Contextuality as a resource

I There may be more than one useful measure
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Overview

We introduce the contextual fraction
(generalising the idea of non-local fraction).

It satisfies a number of desirable properties:

I Generality, i.e. applicable to any measurement scenario

I Normalisation, allowing comparison across scenarios

I 0 for non-contextuality . . . 1 for strong contextuality

I Computable, using linear programming

I Precise relationship to violations of Bell inequalities
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Contextuality



Empirical data

A B (0,0) (0,1) (1,0) (1,1)
a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

measurement
device

mA ∈ {a1, a2}

oA ∈ {0, 1}

measurement
device

mB ∈ {b1, b2}

oB ∈ {0, 1}

preparation

p
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Abramsky–Brandenburger framework
Measurement scenario 〈X ,M,O〉:

I X is a finite set of measurements or variables
I O is a finite set of outcomes or values
I M is a cover of X , indicating joint measurability (contexts)

Example: (2,2,2) Bell scenario
I The set of variables is X = {a1,a2,b1,b2}.
I The outcomes are O = {0,1}.
I The measurement contexts are:

{ {a1,b1}, {a1,b2}, {a2,b1}, {a2,b2} }

A joint outcome or event in a context C is s ∈ OC , e.g.

s = [a1 7→ 0,b1 7→ 1] .

(These correspond to the cells of our probability tables.)
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Another example: 18-vector Kochen–Specker

I A set of 18 variables, X = {A, . . . ,O}

I A set of outcomes O = {0,1}

I A measurement coverM = {C1, . . . ,C9}, whose contexts Ci
correspond to the columns in the following table:

U1 U2 U3 U4 U5 U6 U7 U8 U9

A A H H B I P P Q
B E I K E K Q R R
C F C G M N D F M
D G J L N O J L O
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Empirical Models

Fix a measurement scenario 〈X ,M,O〉.

Empirical model: family {eC}C∈M where eC ∈ Prob(OC) for C ∈M.

It specifies a probability distribution over the events in each context. These
correspond to the rows of our probability tables

Compatibility condition: these distributions “agree on overlaps”, i.e.

∀C,C′∈M. eC |C∩C′ = eC′ |C∩C′ .

where marginalisation of distributions: if D ⊆ C, d ∈ Prob(OC),

d |D(s) :=
∑

t∈OC , t|D=s

d(t) .

For multipartite scenarios, compatibility = the no-signalling principle.
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Contextuality

A (compatible) empirical model is non-contextual if there exists a
global distribution d ∈ Prob(OX ) (on the joint assignments of out-
comes to all measurements) that marginalises to all the eC :

∃d∈Prob(OX ). ∀C∈M. d |C = eC .

That is, we can glue all the local information together into a global con-
sistent description from which the local information can be recovered.

Contextuality:
family of data which is locally consistent but globally inconsistent.

The import of results such as Bell’s and Bell–Kochen–Specker’s theorems is
that there are empirical models arising from quantum mechanics that are con-
textual.
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Strong contextuality

Strong Contextuality:
no event can be extended to a
global assignment.

E.g. K–S models, GHZ, the PR
box:

A B (0, 0) (0, 1) (1, 0) (1, 1)
a1 b1 X × × X
a1 b2 X × × X
a2 b1 X × × X
a2 b2 × X X ×

•a1

• b1

• a2

•b2

•0

•1
•

•
1

• 0

• 1

•0

•
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The contextual fraction



The contextual fraction
Non-contextuality: global distribution d ∈ Prob(OX ) such that:

∀C∈M. d |C = eC .

Which fraction of a model admits a non-contextual explanation?

Consider subdistributions c ∈ SubProb(OX ) such that:

∀C∈M. c|C ≤ eC .

Non-contetual fraction: maximum weigth of such a subdistribution.

Equivalently, maximum weight λ over all convex decompositions

e = λeNC + (1− λ)e′

where eNC is a non-contextual model.

NCF(e) = λ CF(e) = 1− λ
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Computing the contextual fraction



Contextuality as a linear system
For a measurement scenario 〈X ,M,O〉, the incidence matrix M has

I m rows indexed by 〈C, s〉, C ∈M, s ∈ OC

I n columns indexed by global assignments g ∈ OX

M[〈C, s〉,g] :=

{
1 if g|C = s
0 otherwise

.

An empirical model e can be flattened into a vector ve ∈ Rm.

The columns of the matrix correspond to the deterministic NC models.
Every NC model is a mixture of those.

A probability distribution on global assignments OX is given by a vector
d ∈ Rn. The corresponding NC model is given by M d.

A model e is non-contextual if and only if there is d ∈ Rn solving:

M d = ve with d ≥ 0 .
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(Non-)contextual fraction via linear programming

Checking contextuality of e corresponds to solving

Find d ∈ Rn

such that M d = ve

and d ≥ 0 .

Computing the non-contextual fraction corresponds to solving the fol-
lowing linear program:

Find c ∈ Rn

maximising 1 · c
subject to M c ≤ ve

and c ≥ 0 .
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Violations of Bell inequalities



Generalised Bell inequalities

An inequality for a scenario 〈X ,M,O〉 is given by:
I a set of coefficients α = {α(C, s)}C∈M,s∈E(C)

I a bound R.

For a model e, the inequality reads as

Bα(e) ≤ R ,

where
Bα(e) :=

∑
C∈M,s∈E(C)

α(C, s)eC(s) .

Wlog we can take R non-negative (in fact, we can take R = 0).

It is called a Bell inequality if it is satisfied by every NC model. If it is
saturated by some NC model, the Bell inequality is said to be tight.
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Violation of a Bell inequality

A Bell inequality establishes a bound for the value of Bα(e) amongst
NC models.

For a general (no-signalling) model e, the quantity is limited only by

‖α‖ :=
∑

C∈M

max {α(C, s) | s ∈ E(C)}

The normalised violation of a Bell inequality 〈α,R〉 by an empirical
model e is the value

max{0,Bα(e)− R}
‖α‖ − R

.
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Bell inequality violation and the contextual fraction

Proposition
Let e be an empirical model.

I The normalised violation by e of any Bell inequality is at most
CF(e).

I This is attained: there exists a Bell inequality whose normalised
violation by e is exactly CF(e).

I Moreover, this Bell inequality is tight at “the” non-contextual
model eNC .

e = NCF(e)eNC + CF(e)eSC
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Bell inequality violation and the contextual fraction
Quantifying Contextuality LP:

Find c ∈ Rn

maximising 1 · c
subject to M c ≤ ve

and c ≥ 0 .

e = λeNC +(1−λ)eSC with λ = 1 ·x∗.

NC

C

SC

Qve

Dual LP:

Find y ∈ Rm

minimising y · ve

subject to MT y ≥ 1
and y ≥ 0 .

a := 1− |M|y

Find a ∈ Rm

maximising a · ve

subject to MT a≤0
and a ≤ 1 .

computes tight Bell inequality
(separating hyperplane)
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Computational explorations



Computational explorations

Computational tools (Mathematica package) to:

1. calculate quantum empirical models from any (pure or mixed)
state and any sets of compatible measurements

2. calculate the incidence matrix for any measurement scenario

3. quantify the degree of contextuality of any empirical model using
the LP method

4. find the Bell inequality using the dual LP.
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1. Equatorial measurements on |φ+〉

I two-qubit Bell state |φ+〉 = |↑↑〉+|↓↓〉√
2

I Equatorial measurements at angles (φ1, φ2)

I e.g. (φ1, φ2) = (0, π/3) gives Bell–CHSH
model

A B (0, 0) (0, 1) (1, 0) (1, 1)
a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

|0〉

|1〉

φ1 φ2

θ = π
2

φ = 0
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1. Equatorial measurements on |φ+〉

The minima of the plot (maximum contextuality) occur when

{φ1, φ2} ∈
{{

π

8
,

5π
8

}
,

{
7π
8
,

3π
8

}}
.

A B (0, 0) (0, 1) (1, 0) (1, 1)
a1 b1 p (1/2− p) (1/2− p) p
a1 b2 (1/2− p) p p (1/2− p)
a2 b1 (1/2− p) p p (1/2− p)
a2 b2 (1/2− p) p p (1/2− p)

p =

√
2 + 2
8

Note that these achieve Tsirelson violation of the CHSH inequality.
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2. Equatorial measurements on GHZ(n)

I n-partite GHZ states, given for n > 2 by:

|ψGHZ(n)〉 =
|↑〉⊗n + |↓〉⊗n

√
2

I For n > 2, Mermin considered Pauli X or Y measurements to
provide logical proofs of non-locality

I Again, equatorial measurements on the Bloch sphere.
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2. Equatorial measurements on GHZ(n)

(a) (b)

Figure: Non-contextual fraction of empirical models obtained with equatorial
measurements at φ1 and φ2 on each qubit of |ψGHZ(n)〉 with: (a) n = 3; (b)
n = 4.
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2. Equatorial measurements on GHZ(n)
I n = 3: minima of the plot reach 0 (strong contextuality) at

{φ1, φ2} ∈
{{π

2
,0
}
,

{
2π
3
,
π

6

}
,

{
5π
6
,
π

3

}}
.

(φ1, φ2) = (π/2, 0) corresponds to the Pauli Y and X , yielding the usual
GHZ model. Other minima are identical up to re-labelling: alternative
sets of measurements on the GHZ state that still lead to the familiar
parity argument.

I n = 4: minima of 0 occur at

{φ1, φ2} ∈
{{π

2
,0
}
,

{
5π
8
,
π

8

}
,

{
3π
4
,
π

4

}
,

{
7π
8
,

3π
8

}}
.

I General n: equatorial measurements at

(φ1, φ2) ∈
{(

(n + k)π
2n

,
k π
2n

)
| 0 ≤ k < n

}
on each qubit of the n-partite GHZ state give rise to the strongly
contextual GHZ(n) model.
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Further directions

I Negative Probabilities

I Alternative relaxation of global probability distribution requirement.

I Find quasi-probability distribution q on OX such that q|C = eC

I . . . with minimal weight |q| = 1 + 2ε.
The value ε provides alternative measure of contextuality.

I Corresponds to affine decomposition

e = (1 + ε) e1 − ε e2

with e1 and e2 both non-contextual.

I Corresponding inequalities |Bα(e)| ≤ R

I Cyclic measurement scenarios

I

I Resource Theory

I More than one possible measure of contextuality.

I What properties should a good measure satisfy?

I Operations that do not increase contextuality: relabellings,
restriction, coarse-graining outcome values, tensoring, (some form
of sequential composition?)

I Towards a resource theory as for entanglement (e.g. LOCC),
non-locality, . . .
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Questions...

?
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