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Goal and Outline

Recent reconstructions of (finite-dimensional) QM from simple
principles 1 all assume

e Local tomography (LT), ruling out real and quaternionic QM,

e Systems are determined by their “information capacity” (so,
only one type of bit).

!Daki¢-Brukner (arXiv:0911.0695), Masanes-Mueller (arXiv:1004.1403),
Chiribella-D'Ariano-Perinotti (arXiv:1011.6451 ), etc.



Goal and Outline

Recent reconstructions of (finite-dimensional) QM from simple
principles 1 all assume

e Local tomography (LT), ruling out real and quaternionic QM,

e Systems are determined by their “information capacity” (so,
only one type of bit).

This talk fails to derive f.d. QM from simpler principles — but
gets close, with much less effort:

e No use of LT;

e Allows real, complex and quaternionic QM, plus bits of any
dimension — but little else;

e Added payoff: much easier!

!Daki¢-Brukner (arXiv:0911.0695), Masanes-Mueller (arXiv:1004.1403),
Chiribella-D'Ariano-Perinotti (arXiv:1011.6451 ), etc.
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e homogeneous iff group of order-atomorphisms of E transitive
on interior of E.



Background: all you need to know about Jordan algebras

Let E be a f.d. ordered real vector space with positive cone E_
and with an inner product (, ). E is

o self-dual iff (a,b) >0 Vb € E, iff a € E.

e homogeneous iff group of order-atomorphisms of E transitive
on interior of E.

Koecher-Vingerg Theorem [1957/1961]: E is HSD < E a
formally real Jordan algebra with E = {a%|a € E}



Background: all you need to know about Jordan algebras

Let E be a f.d. ordered real vector space with positive cone E_
and with an inner product (, ). E is

o self-dual iff (a,b) >0 Vb € E, iff a € E.

e homogeneous iff group of order-atomorphisms of E transitive
on interior of E.

Koecher-Vingerg Theorem [1957/1961]: E is HSD < E a
formally real Jordan algebra with E, = {a*|a € E}

Jordan-von Neumann-Wigner Classification [1932]: Formally
real Jordan algebras = direct sums of self-adjoint parts of Mp(TF),
F =R,C,H, M3(0), or “spin factors” V, (“bit” with state space
an n-ball.)



Background: all you need to know about Jordan algebras

Let E be a f.d. ordered real vector space with positive cone E_
and with an inner product (, ). E is

o self-dual iff (a,b) >0 Vb € E, iff a € E.

e homogeneous iff group of order-atomorphisms of E transitive
on interior of E.

Koecher-Vingerg Theorem [1957/1961]: E is HSD < E a
formally real Jordan algebra with E, = {a*|a € E}

Jordan-von Neumann-Wigner Classification [1932]: Formally
real Jordan algebras = direct sums of self-adjoint parts of Mp(TF),
F =R,C,H, M3(0), or “spin factors” V, (“bit” with state space
an n-ball.)



Self-duality in QM

7 a complex Hilbert space, dim(H) = n. Let E = L,(H) with E4
= cone of positive operators. This is SD w.r.t.

(a, b) := 1Tr(ab).



Self-duality in QM

7 a complex Hilbert space, dim(H) = n. Let E = L,(H) with E4
= cone of positive operators. This is SD w.r.t.

(a, b) := 1Tr(ab).
Note that ( ) = 1Tris a bipartite state: if

_ 1

MV

Zx@?eH@@ﬁ,

xeE

E any ONB for H, then ((a® b), W, V) = 1Tr(ab).



Self-duality in QM

7 a complex Hilbert space, dim(H) = n. Let E = L,(H) with E4
= cone of positive operators. This is SD w.r.t.

(a, b) := 1Tr(ab).
Note that ( ) = 1Tris a bipartite state: if

_ 1

MV

> xexcHOH,
xeE
E any ONB for H, then ((a® b), W, V) = 1Tr(ab).

So W perfectly, and uniformly correlates every ONB of H with its
counterpart in H: [(W,x@y)>P=Lifx=y, 0ifx Ly Wis
uniquely defined by this feature.



Probabilistic models

A test space: a collection M = {E, F,...} of (outcome-sets of)
possible measurements, experiments, tests, etc.

Let X :=J M. A probability weight on M.:

o X = [0,1] with Y " a(x) =1VE € M.
xeE
A probabilistic model: a pair A = (M, Q),
e M a test space,

e  a convex set of probability weights on M, the states
of A.

Notation: M(A), X(A) and Q(A) ...
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A test space: a collection M = {E, F,...} of (outcome-sets of)
possible measurements, experiments, tests, etc.

Let X :=J M. A probability weight on M.:
o X = [0,1] with Y " a(x) =1VE € M.
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A probabilistic model: a pair A = (M, Q),
e M a test space,

e  a convex set of probability weights on M, the states
of A.

Notation: M(A), X(A) and Q(A) ...

Standing assumption: Q(A) finite-dimensional.



Two important examples

Simple classical model: A= ({E}, A(E)) — one test, all
probability weights.

Simple quantum model: For a (f.d.) Hilbert space H, let
e M(H) = set of ONBs for H;
e Q(#) = all probability weights states of the form

a(x) = (Wx, x),

W a density operator on H. (= all prob. weights, if
dimH > 2.)



Two-bit examples

The square bit B and diamond bit B’ have the same test space:
M(B) = M(B') = {{x.x'}, {y,y'}}
but different state spaces:

y
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X

1
Q(A) = all prob weights on M(A) Q(A)
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Some properties of probabilistic models

A probabilistic model A is

o uniform iff all tests E € M(A) have a common size, say
|E| = n (the rank of A)

e sharp iff Vx € X(A) 31, € Q(A) with 0,(x) = 1;
e spectral iff sharp and, Va € Q(A), JE € M(A) with
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Some properties of probabilistic models

A probabilistic model A is

o uniform iff all tests E € M(A) have a common size, say
|E| = n (the rank of A)

e sharp iff Vx € X(A) 31, € Q(A) with 0,(x) = 1;
e spectral iff sharp and, Va € Q(A), JE € M(A) with

a= Z a(x)0x.

x€E

Square bit — uniform, but not sharp.
Diamond bit — uniform and sharp, but not spectral.
Classical and quantum models — uniform, sharp, spectral.
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The spaces V(A) and E(A)

V(A) = span of Q(A) in RX(A) with positive cone

VAL ={ta|lacQ, t>0}
Effects are elements a € V(A)* with 0 < a(a) < 1 Va € Q(A).
Example: X(a) = a(x) for x € X(A). Note: VE € M(A),

Y owee X =i up, ua(a) =1 forall a € Q(A).

It's also useful to define E(A) = V(A)*, but ordered by

k
E(A), = { Z t:X;
i=1

X € X(A), ti > 0}




Joint States

A (non-signaling) joint state on A and B is a mapping
w: X(A) x X(B) —[0,1]

with
(a) (E,F) € M(A) x M(B) = ) yyeexrw(xy) = 1;
(b) x € X(A), y € X(B) =
w(x - ) eV(B)and w( - y) e Vi(A)
Condition (b) ensures that w € Q(AB) has well-defined marginal

and conditional states:

) = S wl) €RA) and waly) = o) e ae)
yeF

similarly for wa(y),wy)y .-



Joint States

Marginal and conditional states are related by a Law of total
probability: V E € M(A), F € M(B),

Wy = Zwl(x)w2|x and w1 = sz(y)wuy

x€E yeF

Lemma 0: Every joint state extends to a unique positive linear

mapping
w: E(A) — V(B),

such that 0(x)(y) = w(x,y) Vx € X(A), y € X(B).



Conjugates

Let A be uniform, with rank n. A conjugate for A: a triple
(A,74;m4), 7a : A~ A an isomorphism and 74 is a joint state on

A and A such that
(@) n(x,valy)) = n(y,va(x)) and
(b) na(x,va(x)) = L vx € X(A).

Notation: ya(x) =: X.
Note that (7a)1x(x) = 1. Thus, A sharp = 74 uniquely defined
(by na(x,y) = 15y(x ) = na is symmetric.

n



Lemma 1: Let A be sharp, spectral, and have a conjugate. Then
(a, b) := na(a, b)

is a self-dualizing inner product on E(A).

Proof: Exercisel



Lemma 1: Let A be sharp, spectral, and have a conjugate. Then
(a, b) == na(a, b)
is a self-dualizing inner product on E(A).

Proof: Exercise!

Hints: (, ) bilinear and symmetric by Lemma 0 and sharpness. By
spectrality, 7] takes E(A)+ onto V(A)4, so, is an
order-isomorphism. Spectrality now also implies every a € E(A)
has a decomposition a = ) t.x for some E € M(A) and
coefficients t, € R. Hence,

(a,a) = Z tetyna(x,y) = th >0,

x,yEEXE XEE

with equality only where a=0. So (, ) is positive-definite. That
it's self-dualizing follows easily from i)’'s being an
order-isomorphism. [J



Two Corollaries

Let A satisfy the assumptions of Lemma 1. Then

Corollary 1 (Spectral Uniqueness Theorem): Every a € E(A)
has a unique expansion a =), tie; with e; sharply distinguishable
effects and t; distinct.

This a gives us a functional calculus: with a =), tje; as above,

define
f(a) = Z f(ti)e;.

Corollary 2: If M(A) has rank two then the state space Q(A) is a
euclidean ball (hence, E(A) is a spin factor).



Processes

A process from A to B is represented by a positive linear mapping
7:V(A) - V(B) with ug(t(a)) <1 Va € Q(A).

Can think of p = ug(7(ax)) as probability for the process to “fail”

on input state o.

(Not every such mapping need count as a processes!)

T is reversible iff 3 a process 7’ such that 7/ o 7 = pid: with

probability p, 7/ reverses 7.

This implies 7 is invertible with 1 positive, i.e., T is an
order-automorphism.



Filters and Homogeneity

A filter for E € M(A): a process ¢ : V(A) — V(A) such that
Vx € E dt, > 0 with

d(a)(x) = tee(x)

for all o € Q(A).
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Filters and Homogeneity

A filter for E € M(A): a process ¢ : V(A) — V(A) such that
Vx € E dt, > 0 with

d(a)(x) = txa(x)
for all o € Q(A).

x  prob = la(x)

«a ;Q X y  prob = a(y)

) z  prob = a(y)

Example: For W a density operator on H, & : a — W/2aW/2 s
a filter for any eigenbasis of W, reversible iff W is nonsingular.



Appealing to the KV Theorem,

Theorem 1: Let A satisfy hypotheses of Lemma 1. Then TAE:
(a) A has arbitrary reversible filters

(b) V(A) is homogeneous

(c) E(A) is a formally real Jordan algebra.

One can also show that then X(A) is the set of all minimal
idempotents in E, and M(A) is the set of Jordan frames, i.e., A is
a Jordan model (see arXiv: 1206.2897).



Why spectrality?

A joint state w € Q(AB) correlating iff 3E € M(A), F € M(B),
and partial bijection f C E x F such that

w(ix,y) >0 & (x,y) €f.

Lemma 2: A sharp and w € Q(AB), correlating = wi spectral.

Proof: With f C E x F as above, wyjf(x)(x) = 1, so
w1|x(f(x)) = dx. By LOTP, a = erdom(f) wa(f(x))ox. O
Correlation Postulate: Every state is the marginal of a
correlating joint state.

So: CP implies spectrality. (Note affinity with the “purification
postulate” of Chiribella et al.)



Memory and Correlation

Can the CP itself be further motivated?

Suppose the outcome of a test E € M(A) is recorded in in the
state of an ancilla B. Then A and B must be in a joint state w
such that the conditional states wy|, := B, x € E, are sharply
distinguishable, say by F € M(B). Then w correlates E with F. If
the measurement of E doesn't disturb «, then a@ = wy.

So we might adopt

Non-Disturbance Principle: For every state, there is a test that
can be recorded in that state without disturbance.



Conclusion:
Four conditions characterize probabilistic models associated with
formally real Jordan algebras:
(1) Ais sharp,
(2) A has a conjugate,
(3) A satisfies the CP
(4) A has arbitrary reversible filters

Condition (4) is needed only for homogeneity. Conditions (1)-(3)
already vyield a rich structure (Corollaries 1, 2).

Questions:
e Can one prove Theorem 1 without using the KV theorem?
e Can Lemma 1 help simplify earlier reconstruction results?
e Monoidal categories of probabilistic models having

well-behaved conjugates are automatically dagger-compact,
with 14 as “cup”. In such a category, is spectrality automatic?



Conclusion:
Four conditions characterize probabilistic models associated with
formally real Jordan algebras:
(1) Ais sharp,
(2) A has a conjugate,
(3) A satisfies the CP
(4) A has arbitrary reversible filters

Condition (4) is needed only for homogeneity. Conditions (1)-(3)
already vyield a rich structure (Corollaries 1, 2).

Questions:
e Can one prove Theorem 1 without using the KV theorem?
e Can Lemma 1 help simplify earlier reconstruction results?

e Monoidal categories of probabilistic models having
well-behaved conjugates are automatically dagger-compact,
with 14 as “cup”. In such a category, is spectrality automatic?

Thanks!



