The 13th International Conference on Quantum Physics and Logic (QPL2016), University of Strathclyde, Glasgow, Scotland, June 10 (6–10), 2016

Operational meanings of orders of observables defined through quantum set theories with different conditionals

Masanao Ozawa

Nagoya University, Graduate School of Information Science

Supported by JSPS KAKENHI, No. 26247016, No. 15K13456.

Classical Physics

- Physical system \Leftrightarrow Borel space (Ω, \mathcal{F})
- ullet Observables \Leftrightarrow Real Borel functions $X(\omega)$
- States \Leftrightarrow Probability measures P
- $\Pr\{X \in I || P\} = P(\{\omega \in \Omega | X(\omega) \in I\})$

Quantum Physics

- Physical system \Leftrightarrow Hilbert space ${\cal H}$
- Observables \Leftrightarrow Self-adjoint operators X
- States \Leftrightarrow Density operators ρ
- ullet $\Pr\{X \in I \|
 ho\} = \operatorname{Tr}[E^X(I)
 ho]$

Problem

- In classical physics, the probabilities for equality and order are defined.
- Equality: $\Pr\{X=Y\|P\}=P(\{\omega\in\Omega|X(\omega)=Y(\omega)\})$
- Order: $\Pr\{X \leq Y || P\} = P(\{\omega \in \Omega | X(\omega) \leq Y(\omega)\})$
- Problem: How should we define the probabilities for equality and order of quantum observables? $\Pr\{X = Y || \rho\} = ?, \Pr\{X \le Y || \rho\} = ?,$
- Method: Systematic use of quantum set theory.
- But, quantum logic has ambiguity for conditional: three candidates
- Conclusion: Each conditional defines a quantum set theory satisfying the ZFC transfer principle. Equality does not depend on the choice of conditional. Order depends on it, but has clear operational meaning.

Quantum Logic

• Q = the set of projection operators on \mathcal{H} .

$$P \leq Q \Leftrightarrow PQ = P$$

$$P^{\perp} = I - P$$

 $\Rightarrow \mathcal{Q}$ is a complete orthomodular lattice.

$$P \wedge Q = \operatorname{wo-lim}(PQ)^n$$

$$Pee Q=(P^\perp\wedge Q^\perp)^\perp$$

Quantum Conditionals

• Hardegree's condition for material conditional:

(LB) If
$$[P,Q]=0$$
 then $P\to Q=P^\perp\vee Q$.

(E)
$$P \rightarrow Q = 1$$
 if and only if $P \leq Q$.

(MP)
$$P \wedge (P \rightarrow Q) \leq Q$$
 (modus ponens).

(MT)
$$Q^{\perp} \wedge (P \rightarrow Q) \leq P^{\perp}$$
 (modus tollens).

• There are exactly three polynomial material conditionals:

(S)
$$P o {}_S Q := P^{\perp} \lor (P \land Q)$$
 (Sasaki),

(C)
$$P \rightarrow {}_{C}Q := (P \vee Q)^{\perp} \vee Q$$
 (Contrapositive Sasaki),

(R)
$$P \to {}_R Q := (P \wedge Q) \vee (P^{\perp} \wedge Q) \vee (P^{\perp} \wedge Q^{\perp})$$
 (Relevance).

• Note: $P \to Q = P^{\perp} \vee Q$ does not satisfy (E).

Characterization

• For any $P, Q \in \mathcal{Q}$, we have the following relations.

(i)
$$P \rightarrow_S Q = \operatorname{ran}(P^{\perp}Q)$$
.

(ii)
$$P{
ightarrow}_C Q={
m ran}(QP^\perp)$$
.

(iii)
$$P{
ightarrow}_R Q={
m ran}(P^\perp Q)\wedge {
m ran}(QP^\perp)$$
.

Biconditional is defined by

$$P \leftrightarrow Q := (P \rightarrow Q) \land (Q \rightarrow P).$$

• Biconditionals are the same:

$$P \leftrightarrow_S Q = P \leftrightarrow_C Q = P \leftrightarrow_R Q = (P \land Q) \lor (P^{\perp} \land Q^{\perp}).$$

Quantum Set Theory

ullet $V_{lpha}^{(\mathcal{Q})}$ is defined for every ordinal lpha by

$$V_{lpha}^{(\mathcal{Q})} = \{u|\ u: \mathcal{D}(u)
ightarrow \mathcal{Q}, (\exists eta < lpha)\ \mathcal{D}(u) \subseteq V_{eta}^{(\mathcal{Q})}\},$$

where $\mathcal{D}(u)$ is the domain of u.

ullet The $\mathcal Q$ -valued universe $V^{(\mathcal Q)}$ is defined by

$$V^{(\mathcal{Q})} = \bigcup_{lpha \in \mathbf{On}} V_{lpha}^{(\mathcal{Q})}$$

Q-Valued Interpretation

• Q-valued ruth value $\llbracket \phi \rrbracket$ is define by the following recursion.

$$\textbf{1.} \ \llbracket u=v\rrbracket = \bigwedge_{u'\in \mathcal{D}(u)} (u(u') \to \llbracket u'\in v\rrbracket) \wedge \bigwedge_{v'\in \mathcal{D}(v)} (v(v') \to \llbracket v'\in u\rrbracket).$$

- 2. $\llbracket u \in v
 rbracket = \bigvee_{v' \in \mathcal{D}(v)} (v(v') \wedge \llbracket u = v'
 rbracket).$
- 3. $[\![\neg \phi]\!] = [\![\phi]\!]^{\perp}$.
- **4.** $[\![\phi_1 \to \phi_2]\!] = [\![\phi_1]\!] \to [\![\phi_2]\!].$
- 6. $\llbracket (\forall x \in u) \ \phi(x) \rrbracket = \bigwedge_{u' \in \mathcal{D}(u)} (u(u') \to \llbracket \phi(u') \rrbracket).$
- 7. $\llbracket (\exists x \in u) \ \phi(x) \rrbracket = \bigvee_{u' \in \mathcal{D}(u)} (u(u') \land \llbracket \phi(u') \rrbracket).$

Embedding the Standard Universe

ullet The universe V of ZFC set theory is embedded by $v\mapsto \check{v},$ where \check{v} is defined by

$$egin{array}{lll} \mathcal{D}(\check{v}) &=& \{\check{u}|\ u \in v\}, \ \check{v}(\check{u}) &=& 1. \end{array}$$

Theorem 1 (Elementary Equivalence Principle) Independent of the choice of conditional, for any $\phi(x_1, ..., x_n)$ we have

$$V \models \phi(u_1, \ldots, u_n)$$
 if and only if $\llbracket \phi(\check{u}_1, \ldots, \check{u}_n) \rrbracket = I$.

Commutativity

• For any subset $A \subseteq Q$, the commutant of A is defined by

$$\mathcal{A}^! = \{P \in \mathcal{Q} \mid [P,Q] = 0 ext{ for all } Q \in \mathcal{A}\}.$$

ullet The commutator of ${\cal A}$ is defined by

$$oxed{\bot\!\!\!\bot}(\mathcal{A}) = igvee\{E \in \mathcal{A}^! \cap \mathcal{A}^{!!} \mid [P_1,P_2]E = 0 ext{ for all } P_1,P_2 \in \mathcal{A}\}.$$

• The support L(u) of $u \in V^{(\mathcal{Q})}$ is defined by recursion on the rank of u:

$$L(u) = \bigcup_{x \in \mathcal{D}(u)} L(x) \cup \{u(x) \mid x \in \mathcal{D}(u)\}.$$

• The commutator of u_1, u_1, \ldots, u_n is defined by

Transfer Principle

Theorem 2 Independent of the choice of conditional, for every formula $\phi(x_1, \ldots, x_n)$,

if ZFC
$$\vdash \phi(x_1, ..., x_n)$$
 then $\underline{\vee}(u_1, ..., u_n) \leq \llbracket \phi(u_1, ..., u_n) \rrbracket$.

Quantum Observables as Quantum Real Numbers

- Let Q be a rational numbers in V. The set of rational numbers in $V^{(\mathcal{Q})}$ corresponds to $\check{\mathbf{Q}}$.
- A real number is defined to be an upper segment of a Dedekind cut of the set of rational numbers.
- The predicate R(x) meaning "x is a real number" is expressed by

$$x \subseteq \check{\mathbf{Q}} \land \exists y \in \check{\mathbf{Q}}(y \in x) \land \exists y \in \check{\mathbf{Q}}(y \not\in x)$$

 $\land \forall y \in \check{\mathbf{Q}}(y \in x \leftrightarrow \forall z \in \check{\mathbf{Q}}(y < z \to z \in x)).$

ullet The set $\mathrm{R}^{(\mathcal{Q})}$ of "real numbers in $V^{(\mathcal{Q})}$ " is defined by

$$\mathrm{R}^{(\mathcal{Q})} = \{u \in V^{(\mathcal{Q})} | \ \mathcal{D}(u) = \mathcal{D}(\check{\mathrm{Q}}) \ ext{and} \ \llbracket \mathrm{R}(u)
rbracket = 1 \}.$$

Theorem 3 Independent of the choice of conditional, there is a one-to-one correspondence between a real number $\tilde{A}=u\in\mathrm{R}^{(\mathcal{Q})}$ in $V^{(\mathcal{Q})}$ and a self-adjoint operator A on \mathcal{H} such that

(i)
$$E^A(\lambda) = \bigwedge_{\lambda < r \in \mathbb{Q}} u(\check{r})$$
 for every $\lambda \in \mathbb{R}$,

(ii)
$$u(\check{r}) = E^A(r)$$
 for every $r \in \mathbb{Q}$.

Equality for Quantum Observables

ullet Independent of the choice of conditional, for any self-adjoint operators A,B

$$\llbracket ilde{A} = ilde{B}
rbracket = igwedge_{r \in Q} \llbracket ilde{A} \leq \check{r}
rbracket \leftrightarrow \llbracket ilde{B} \leq \check{r}
rbracket = igwedge_{r \in Q} E^A(r) \leftrightarrow E^B(r)$$

• The probability of equality

$$\Pr\{A=B\|
ho\}= ext{Tr}[ilde{A}= ilde{B}
ilde{
ho}]$$

is independent of the choice of conditional, since so is \leftrightarrow .

Characterization of Equality

Theorem 4 For any observables A and B on H and any state $\psi \in \mathcal{H}$, the following conditions are equivalent:

(i)
$$\psi \Vdash ilde{A} = ilde{B}$$
, i.e., $\psi \in \mathcal{R}(\llbracket ilde{A} = ilde{B}
rbracket)$

(ii)
$$E^A(\lambda)\psi=E^B(\lambda)\psi$$
 for any $\lambda\in\mathrm{R}$.

(iii)
$$f(A)\psi = f(B)\psi$$
 for every Borel function f .

(iv)
$$\langle \psi, E^A(\lambda) E^B(\mu) \psi \rangle = \langle \psi, E^A(\lambda \wedge \mu) \psi \rangle$$
 for any λ, μ .

(v) The joint probability distribution $\mu_{\psi}^{A,B}$ exists and satisfies

$$\mu_\psi^{A,B}(\{(a,b)\in\mathrm{R}^2\mid a=b\})=I.$$

Spectral Order of Self-Adjoint Operators

- Definition. $X \preccurlyeq Y \Leftrightarrow E^Y(\lambda) \leq E^X(\lambda)$ for all $\lambda \in \mathbb{R}$.
- Theorem (Olson, 1971). Coincides with linear order for projections and commuting self-adjoint operators.
- Theorem (Olson, 1971). $0 \le X \preccurlyeq Y \Leftrightarrow 0 \le X^n \le Y^n$ for large n.
- Theorem 5 Independent of the choice of conditional, we have

$$\llbracket ilde{X} \leq ilde{Y}
rbracket = 1 \quad \Leftrightarrow \quad X \preccurlyeq Y$$

• Proof: In any choice of \rightarrow , we have

$$I = \llbracket ilde{X} \leq ilde{Y}
rbracket = igwedge_{r \in Q} \llbracket ilde{Y} \leq \check{r}
rbracket
ightarrow \llbracket ilde{X} \leq \check{r}
rbracket = igwedge_{r \in Q} E^Y(r)
ightarrow E^X(r).$$

Thus, $E^Y(r) \to E^X(r) = I$ and $E^Y(r) \le E^X(r)$ by (E) for all $r \in Q$.

Probabilistic Interpretation of the Order of Observables

- We assume $\dim(\mathcal{H}) < \infty$.
- The joint probability of obtaining the outcomes X=x and Y=y in the projective measurement of Y immediately followed by a measurement of X is given by

$$P_{\psi}^{X,Y}(x,y) = \|E^X(\{x\})E^Y(\{y\})\psi\|^2.$$

• The joint probability of obtaining the outcomes X=x and Y=y in the projective measurement of X immediately followed by a measurement of Y is given by

$$P_{\psi}^{Y,X}(y,x) = \|E^Y(\{y\})E^X(\{x\})\psi\|^2$$
.

$$P_{\psi}^{X,Y}(x,y) = \|E^X(\{x\})E^Y(\{y\})\psi\|^2$$
 .

$$P_{\psi}^{Y,X}(y,x) = \|E^Y(\{y\})E^X(\{x\})\psi\|^2.$$

• Theorem 6 For any observables X, Y and a state vector ψ , we have the following.

$$(i) \Pr\{(ilde{X} \leq ilde{Y})_S \| \psi \} = 1 \Leftrightarrow \sum_{(x,y): x \leq y} P_{\psi}^{X,Y}(x,y) = 1.$$

$$(ii) \Pr\{(ilde{X} \leq ilde{Y})_C \| \psi \} = 1 \Leftrightarrow \sum_{(x,y): x \leq y} P_{\psi}^{Y,X}(y,x) = 1.$$

(iii)
$$\Pr\{(ilde{X} \leq ilde{Y})_R \| \psi \} = 1$$

$$\Leftrightarrow \sum_{(x,y):x\leq y} P_{\psi}^{X,Y}(x,y) = 1$$
 and $\sum_{(x,y):x\leq y} P_{\psi}^{Y,X}(y,x) = 1$.

Conclusion

- In quantum mechanics, we can define the probability of equality and order relation for observables.
- Equality: $\Pr\{X=Y\|\rho\}=\operatorname{Tr}[\bigwedge_{r\in \mathbb{Q}}E^X(r)\leftrightarrow E^Y(r)
 ho]$
- Order: $\Pr\{X \leq Y \| \rho\} = \text{Tr}[\bigwedge_{r \in \mathbb{Q}} E^Y(r) \to E^X(r) \rho]$
- ullet Equality implies commutativity: $[\![ilde{X} = ilde{Y}]\!] \leq \underline{ee}(ilde{X}, ilde{Y})$
- We have

$$\Pr\{X = Y || \rho\} = \sum_{x \in \mathbb{R}} \operatorname{Tr}[E^X(\{x\}) \wedge E^Y(\{x\}) \rho].$$

- Order relation depends on the choice of conditional:
- $\Pr\{(\tilde{X} \leq \tilde{Y})_S || \psi\} = 1$: $X \leq Y$ holds in projective Y-X measurement (inference from past large to future small).
- $\Pr\{(\tilde{X} \leq \tilde{Y})_C || \psi\} = 1$: $X \leq Y$ holds in projective X-Y measurement (inference from past small to future large).
- $\Pr\{(\tilde{X} \leq \tilde{Y})_R || \psi\} = 1$: $X \leq Y$ holds in both projective X-Y measurement and projective Y-X measurement (inference from both sides).