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Techniques from higher categories and higher-dimensional rewriting are becoming increasingly im-
portant for understanding the finer, computational properties of higher algebraic theories that arise,
among other fields, in quantum computation. These theories have often the property of contain-
ing simpler sub-theories, whose interaction is regulated in a limited number of ways, which reveals a
topological substrate when pictured by string diagrams. By exploring the double nature of computads
as presentations of higher algebraic theories, and combinatorial descriptions of “directed spaces”, we
develop a basic language of directed topology for the compositional study of algebraic theories. We
present constructions of computads, all with clear analogues in standard topology, that capture in
great generality such notions as homomorphisms and actions, and the interactions of monoids and
comonoids that lead to the theory of Frobenius algebras and of bialgebras. After a number of ex-
amples, we describe how a fragment of the ZX calculus, the theory of interacting bialgebras, can be
reconstructed in this framework.

1 Introduction

A traditional presentation of an algebraic theory consists of a number of generating operations, together
with a number of equations that they satisfy. If we are concerned with computational aspects of the
presentation — looking for normalisation procedures, for instance — it is commonplace to replace equa-
tions with directed rewrite rules. Then, in the analysis of critical pairs and confluences of a rewrite
system, we are led to consider relations between different sequences of rewrites, which can in turn be
relaxed to “rewrites of rewrites”, and so on, leading into higher-dimensional rewriting theory [35]. From
this perspective, the dichotomy between generators and relations in a presentation is resolved: they both
become generators of a higher-dimensional algebraic theory, only differing in dimension.

The natural setting for higher-dimensional rewriting is higher category theory, where, besides the
objects (0-cells) and morphisms (1-cells) of basic category theory, there can also be n-cells between
(n−1)-cells, for any n > 0. The use of terminology borrowed from topology is not coincidental: there
is a sense in which the “directed n-cells” of higher categories behave like topological n-cells. This is
exemplified by the successful application of methods from homology theory in the study of rewriting
systems, based on this analogy [28, 29]; however, it is perhaps best pictured through the use of string
diagrams [38, 26] (or, more recently, surface diagrams [18]) for reasoning about higher categories.

In one especially relevant application, string diagrams have emerged as a strong contender for a high-
level, native syntax for quantum programming [44, 15], whose highly symmetrical semantics — in pure,
finite-dimensional quantum theory, all processes are reversible, and inputs can be turned into outputs
and vice versa [37] — require a quite unusual amount of interplay between algebraic and coalgebraic
structures.

Better understanding the computational properties of theories such as the ZX calculus [14, 2] and its
refinement, the ZW calculus [22], is pivotal in making them viable for the efficient design of quantum
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algorithms and protocols. Although these theories include, as a whole, a relatively large number of
axioms, they contain a number of simpler sub-theories, whose interactions are regulated by the axioms
in fairly predictable ways: something is a homomorphism of something else, something is an action on
something else...

Beyond these motivating examples, such a factorisation seems to be a property of many theories: as
a simple case, think of ∗-monoids, which can be seen as an interaction of the theory of monoids and the
theory of involutions. So we asked ourselves the question:

• Is there a way to study algebraic theories compositionally, so that one can derive properties of the
larger theory from its components, and the few ways in which they are allowed to interact?

There has already been, in fact, an attempt to develop a compositional algebra, through Lack’s “com-
posing PROPs” framework [27]. In this setting, a presentation of a fragment of the ZX calculus — the
theory of interacting bialgebras — was successfully constructed from the theories of monoids and of
comonoids [7]. There are, nevertheless, two downsides to this approach, relative to our objectives.

Firstly, composition relies on the choice of a “distributive law”, which conceptually amounts to
stating what the normal form for operations of the resulting theory should be. Thus, it is a finalistic
composition, in the philosophical sense: we already know what the resulting theory will globally look
like, which subtracts something from its heuristic value, especially when we only have an algebraic
presentation at hand. In fact, “composing PROPs” is mostly useful to derive axioms when concrete
models of the component theories are available, also suggesting a “concrete” way of composing them.

Secondly, it is a flat composition, in that it works in a strictly 2-categorical framework, and fails to
account for any of the topological properties of the interactions. For instance, two specular distributive
laws for monoids and comonoids lead, respectively, to the theory of special Frobenius algebras, and to
the theory of bialgebras. Both the theory of monoids and the theory of comonoids are planar — none of
the axioms require the swapping of inputs or outputs of operations — and so is the theory of Frobenius
algebras; hence, the interaction leading to Frobenius algebras is not supposed to change the dimension
of generators.

On the other hand, the bialgebra law — a part of the theory of bialgebras — is not planar, and is in
fact best represented by a string diagram in 3 dimensions, where the monoid part and the comonoid part
belong to different, orthogonal planes, as in the following picture.

=

So the interaction leading to bialgebras should be of a different, dimension-increasing sort.
In this paper, we try to lay the groundwork for an alternative approach, and make a case for the

following assertions:

1. that there exists a way of studying algebraic theories compositionally, with a small number of basic
constructions corresponding to the most frequent interactions;

2. that the language for compositional algebra is a kind of combinatorial directed topology, all inter-
actions having clear analogues in standard topology.

In Section 2, we briefly present our technical framework of choice, the theory of computads or
polygraphs, and build a basic vocabulary of directed topology in this context. In Section 3, we use these
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tools to construct presentations of some basic theories, such as the theory of monoids, from even simpler
ones. In Section 4, we show how two kinds of interaction capture the notion of homomorphism and of
(co)action. Finally, in Section 5, we introduce the dimension-changing operation which enables us to
obtain the theory of bialgebras (and of commutative monoids) from the theory of monoids. We conclude
by describing a reconstruction “from scratch” of the theory of interacting bialgebras, and discuss some
of the many possible further directions of this project.

2 Computads and directed spaces

A computad is, informally, a presentation of a higher category “by generators and no relations”. This
notion, introduced by Street [40] in the 2-dimensional case, was rediscovered and expanded by Burroni
[13] in the context of higher-dimensional rewriting theory, where it is known under the name of poly-
graph. We will only use the original setting of computads for strict ω-categories, although weak variants
have also been considered [4].

A computad describes how to build a higher category by progressively adjoining generating cells of
higher dimension, whose border is a pasting of lower-dimensional cells, and letting composition be, at
each stage, the free pasting of old and new cells.

Like Lawvere theories, PROs, and operads [32], computads can be used to describe algebraic the-
ories, to be internalised in arbitrary higher categories through appropriate “semantical” functors. The
equational laws by which such theories are normally presented need to have corresponding higher cells,
and are, therefore, directed by default: this makes computads a natural choice for studying computa-
tional aspects of presentations (normalisation, confluence...), and has led to a particular interest among
rewriting theorists [21, 28].

The information contained in a computad is conceptually analogous to the description of a topo-
logical space as a CW complex, with directed cells replacing the undirected, topological cells. The
formalism of higher categories can be seen as an auxiliary, combinatorial tool for specifying how cells
are glued together, corresponding to the gluing maps of point-set topology; in other words, a computad
is a combinatorial description of a directed space, in the spirit of Grandis [20]. There may be ways to
make an explicit connection; for now, we take this as no more than a guiding heuristics.

The simplest and more direct combinatorics of pasting are provided by globular ω-categories. Since
technical details are not particularly important in the remainder, we leave the presentation quite informal,
and refer, for instance, to [34] for more details. Preliminary definitions are in Appendix A.
Definition 2.1. A computad X is a pair of an ω-category X and a subset |X | ⊆X , such that, if Xn is
the n-skeleton of X , and |X |n := {σ ∈ |X | | d(σ) = n}, for n≥ 0:
• X0 = |X |0;

• Xn is obtained from Xn−1 by freely adjoining the cells of |X |n.
A map f : X → Y of computads is a function of sets | f | : |X | → |Y | that induces a functor of free

ω-categories f : X → Y . Computads and their maps form a category Cpt.
Thus, a computad is described by giving, for each n, a set Xn of generating n-cells, and specifying

their border as a formal composition of the lower-dimensional generating cells. A map of computads is
a mapping of the generating cells of X onto generating cells of Y preserving the composition of borders.
Definition 2.2. The disjoint union X⊕Y of two computads X and Y is the computad with generating set
|X⊕Y | := |X |+ |Y |, and

∂
α
n σ =

{
∂ α

X ,nσ , σ ∈ |X | ,
∂ α

Y,nσ , σ ∈ |Y | .
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A subcomputad A⊆ X is a map A→ X of computads whose underlying set-function is an inclusion
of sets |A| ⊆ |X |. Given a set B of cells of X , we also denote by B the smallest subcomputad of X that
contains them.

An equivalence relation E on a computad X is an equivalence relation on the set |X | of generating
cells, whose extension to composite cells commutes with all border operators. We denote by X/E the
quotient of X by the equivalence relation E, with generating set |X |/E. Given a subcomputad A⊆ X , we
also write X/A for the quotient of X by the equivalence relation |A|× |A|.

These operations are analogous to the corresponding operations on topological spaces, something we
try to highlight through notation and terminology: we build the disjoint union of X and Y by separately
attaching the generating cells of X and of Y , and obtain a quotient space by identifying cells compatibly
with their borders. The disjoint union is a categorical coproduct in Cpt [31]; however, the product
of topological spaces does not correspond to the categorical product of computads, but to a different
monoidal structure — the computadic version of the Crans-Gray tensor product of ω-categories [16].

Definition 2.3. The tensor product X ⊗Y of two computads X and Y is the computad with generating
set |X⊗Y | := |X |× |Y |, where

|X⊗Y |n =
n

∑
k=0
|X |k×|Y |n−k ,

and, for all generating n-cells σ ⊗ τ , σ ∈ |X |k, τ ∈ |Y |n−k, attaching is characterised by the following
condition. Let

ε(n) =

{
+ if n is even,
− if n is odd.

By induction: (X ⊗Y )0 is just X0×Y0. For all n > 0, in (X ⊗Y )n−1, extend the −⊗− operation
to composite cells by writing (ρ #m ρ ′)⊗π for the pasting of ρ⊗π and ρ ′⊗π along their shared border
∂
+
m−1ρ⊗π = ∂

−
m−1ρ ′⊗π , and similarly for ρ⊗ (π #m π ′).

Then, ∂ α
n−1(σ ⊗ τ) is obtained by pasting the (n−1)-cells

∂
α
k−1σ ⊗ τ and σ ⊗∂

ε(k)α
n−k−1τ

along their shared border ∂ α
k−1σ ⊗∂

ε(k)α
n−k−1τ .

The tensor product determines a non-symmetric monoidal structure on Cpt, with 1, the terminal
computad of a single 0-cell, as unit.

The explicit combinatorics for the border operators in X⊗Y are quite complicated; we will, however,
only consider low-dimensional cases, of which some expressions are given in Appendix B. The approach
to ω-categories by cubical sets with connections [9, 10] leads to a much sleeker definition of the Crans-
Gray tensor product [1], but it is unclear whether a cubical description of computads would lead to an
overall simplification, due to the additional complications related to the handling of thin cells.

Remark 2.4. That this is a valid definition can be seen as following from the results of [39]. Our con-
ditions determine the tensor product for the category of loop-free augmented directed complexes with
unital bases, which, modulo an adjustment of terminology, is equivalent to a subcategory of ω-categories
presented by computads that are loop-free in a suitable sense. These include, in particular, the n-globes
Gn, generated by one n-cell > and one cell kα for all k < n, α ∈ {+,−}, such that ∂ α

k (>) = kα , and the
“walking m-compositions” Gn #m Gn (called G[n] and G[n;m] in the referenced paper).
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This tensor product determines, in turn, the Crans-Gray tensor product on the whole of ωCat. Let X ,
Y be computads, and X ⊗Y be the tensor product of the ω-categories they generate. For all σ ∈ |X |k,
τ ∈ |Y |n−k, σ ⊗ τ corresponds to a functor (σ ⊗ τ)∗ : Gk⊗Gn−k→X ⊗Y sending >⊗> to σ ⊗ τ .

In particular, the border of σ ⊗ τ is the image of a cell of Gk⊗Gn−k. But since Gk⊗Gn−k is freely
generated by the iα ⊗ jβ , and (σ ⊗ τ)∗(iα ⊗ jβ ) = ∂ α

i σ ⊗ ∂
β

j τ , the border of σ ⊗ τ is generated by the

∂ α
i σ ⊗∂

β

j τ . If ∂ α
i σ , ∂

β

j τ are generators, there is nothing to do.
Otherwise, suppose the first one is a composite cell; by the interchange law, it can be written in the

form ρ #m ρ ′ for some m > 0, so that no composition of dimension d > m appears in ρ,ρ ′. By a similar
argument as before, using the fact that (ρ #m ρ ′)⊗π corresponds to a functor (Gi #m Gi)⊗G j→X ⊗Y ,
we can rewrite the tensor as a composition of ρ ⊗π , ρ ′⊗π , and lower-dimensional cells. Continuing
like this until all the highest-dimensional compositions are eliminated, since generators can appear only
in finite number in the cells of X and Y , we finally obtain an expression of the border of σ ⊗ τ as
a composition of tensors of lower-dimensional generators; so X ⊗Y , as defined, is a presentation of
X ⊗Y .

All these constructions have analogues for topological spaces; the following, however, is purely
directed.

Definition 2.5. Let X be a computad, S⊆ N. Then, Xop(S) is the computad with the same generating set
of X , but with the direction of n-cells and n-composition reversed for all n∈ S; that is, letting σop(S) := σ

for all 0-cells of X , define inductively

∂
α
n−1(σ

op(S)) :=

{
(∂−α

n−1σ)op(S) , n ∈ S ,

(∂ α
n−1σ)op(S) , n 6∈ S ,

(σ #n τ)op(S) :=

{
τop(S) #n σop(S) , n ∈ S ,

σop(S) #n τop(S) , n 6∈ S ,

for all numbers n, cells σ , τ of Xn, and α ∈ {+,−}. Then, Xop(S) is generated by the σop(S), for all
σ ∈ |X |. We write Xop := Xop(N).

In the definition of the tensor product of computads, the border of the tensor of two cells is reversed
when the border of the two cells, separately, is: it follows that, for all computads X and Y , (X ⊗Y )op '
Xop⊗Y op.

In what follows, our constructions will often result in lax versions of algebraic theories, where equal-
ities are replaced by cells pointing in a specific direction. These may not always be the best choices for
computational purposes; we will leave it implicit that one can always reverse cells of a given dimension,
if needed. We will also tend to not distinguish between strict and lax versions of a theory: the theories
that we consider are usually interpreted in low-dimensional categories, so we can leave it to semantical
functors to strictify as necessary, turning directed cells into equalities or isomorphisms.

3 Basic examples: Yang-Baxter, associativity, units

In this section, we look at some fundamental examples of interacting computads, with a focus on their
algebraic interpretation. The latter is better understood when cells are visualised as string diagrams in the
style of [26]; for the first examples, however, we will also provide the more traditional, dual presentation
by pasting diagrams.
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The simplest 1-dimensional computad, and the basic ingredient of many later constructions, is the
directed interval I, which is the same as the 1-globe G1.

0 1
a

Definition 3.1. The directed n-cube is the computad In obtained by tensoring n copies of I.

The directed 2-cube models an “interaction” operation with no additional relations. We write στ for
σ ⊗ τ in the pasting diagrams.

00

01

10

11

0a a1

a0 1a

aa

Further on, the directed 3-cube can be seen as the presentation of a coloured, directed version of the
Yang-Baxter equation.

000

001 011

111

100 110

010

00a

0a1

a11

a00

1a0

11a

0a0

01a

a10

0aa

a1a

aa0
aaa

000

001 011

111

100 110

101

00a

0a1

a11

a00

1a0

11a

a01

1a1

10a

aa1

a0a

1aa

(1)

Noting that all cells of the same dimension have the same shape in I3, we can eliminate all colouring by
quotienting by the equivalence relation E := {(σ ,σ ′) | d(σ) = d(σ ′)}. Models of I3/E, that is, functors
from the 3-category it generates to a monoidal category C (as a 2-category with a single 1-cell), are
R-matrices in C [36].

There is much more to quotients of cubes: in fact, they cover all sorts of associativity-like equations.
We introduce a couple general constructions for later use.

Definition 3.2. Let X be a computad. The cylinder of X is the computad I⊗X . The future cone of X
is the quotient computad C+(X) := (I⊗X)/({1}⊗X). The past cone of X is the quotient computad
C−(X) := (I⊗X)/({0}⊗X).
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One can obtain different variants of these constructions by reversing the directions of cells of any
dimension. All directed variants collapse for the corresponding constructions of CW complexes, the
usual cylinder and cone of a topological space.

We can see the n-cube as the n-th iteration of the cylinder construction on the terminal computad.
The corresponding iterations of the future cone produce Street’s oriented simplexes, or orientals [41].
This is proven in detail in [12].

Definition 3.3. The n-oriental is the computad C+ n. . .C+(1).

The 2-oriental is just a binary operation.

00

01

1

0a a1

a0

aa

The 3-oriental is a coloured version of an associator.

000

001 01

1

00a

0a1

a1

a00

0a0

0aa

a1a aaa

000

001 01

1

00a

0a1

a1

a00

a01

aa1

a0a

The 4-oriental corresponds to the pentagonator, a directed version of MacLane’s pentagon [30] and
a part of the theory of pseudomonoids; we only draw its string-diagrammatic version.

Taking past instead of future cones gives the coalgebraic duals of these constructions: respectively, a
co-multiplication, co-associator, and co-pentagonator.

Clearly, these computads can also be obtained directly as quotients of the n-cubes. Now, let E instead
be the equivalence relation on I3 with

0⊗σ ⊗ τ ∼ 0⊗σ
′⊗ τ ,

1⊗σ ⊗ τ ∼ 1⊗σ ⊗ τ
′ ,
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for all σ ,σ ′,τ,τ ′ ∈ |I|. Then, the quotient I3/E — which roughly corresponds to taking a past cone on
one copy of I, and a future cone on another, “fibrewise” on cells of the other copy — presents a version
of the Frobenius law (see [25, Chapter 4] for a review). This can be checked graphically by merging
regions in Diagram (1).

(2)

Again, since both orientals and their duals have congruent shapes for cells of equal dimension, we
can quotient in order to obtain presentations of the theory of semigroups and co-semigroups, as lax —
that is, with as many non-invertible higher cells — as we want them to be.

Now, we show how to obtain the theory of monoids by cones, in two steps; for comonoids, it will
suffice to dualise everything. First of all, we need the 2-computad K presenting the “theory of constants”.

a
η

Then, the future cone of K with reversed 1-cells, C+(K)op(1), is a 3-computad presenting an operation
with a right unit.

Now, take the future cone C+(C+(K)op(1)); this can be pictured as follows.

This is a directed version of MacLane’s triangle equality. As usual, we can identify all cells of congruent
shape; since we have a right unitor 3-cell for the “white-yellow” operation, and a new left unitor 3-cell
for the “yellow-magenta” operation, upon identification, the constant becomes a two-sided unit.

Thus, by quotienting C+(C+(K)op(1)) (or further iterations of future cones), we obtain presentations
of arbitrarily lax theories of monoids.

4 Homomorphisms and actions

Now that we have a list of basic examples, let us reconsider the constructions of Section 3 more in
general. Given a computad X , the cylinder of X has the following structure:
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1. it contains two copies of X , {0}⊗X and {1}⊗X ;

2. for all generating n-cells σ of X , it contains an (n+ 1)-cell a⊗σ , which has 0⊗σ in its input
border, and 1⊗σ in its output border.

The category ωCat with the Crans-Gray tensor product actually admits a biclosed structure, so that a
functor h : I ⊗X → C corresponds to a functor h̃ : I → (X ( C ), where X ( C is an internal
hom-object. But I is just the “walking arrow” category, so h̃ is a morphism in X ( C — which can
be seen as a higher-dimensional version of a category of X-algebras in C ; hence, h̃ is a homomorphism
of X-algebras.

This suggests that I ⊗ X captures the theory of homomorphisms for the theory X : a functor h :
I ⊗X → C is an internal homomorphism in C between the two models h0 : {0}⊗X → C and
h1 : {1}⊗X → C . Observe that the undirected analogue is just a homotopy of maps of topological
spaces.
Example 4.1. Let M be a computad presenting a theory of (possibly lax) monoids, with a single “object”
1-cell a, a multiplication 2-cell µ , and a unit 2-cell η . In I⊗M, the 3-cells a⊗ µ and a⊗η can be
pictured in the following way.

,

(3)

These cells embody the action of “sliding” the multiplication and unit past the mediating 1-cell a⊗
∗, where ∗ is the unique 0-cell of M. The use of sliding for reasoning about naturality is discussed
extensively in [26]; the tensor product of computads provides it with a compositional semantics.

Models of I⊗M in the 2-category Cat are pairs of monads related by a Kleisli law, an asymmetric
version of a distributive law [5]. The dual notion of Eilenberg-Moore law is obtained as a model of
(I⊗M)op(1).

If X is PRO-like, in the sense that it has only one 0-cell ∗ and one cell a of lowest, non-zero di-
mension k (so that k is seen as the dimension of “objects” in the theory), one is usually interested in
homomorphisms between X-algebras in a higher category C that are localised at the same 0-cell, so
that the lowest-dimensional component is a (k+1)-morphism between the two underlying objects of the
algebras.

In order to achieve this, we quotient I⊗X to obtain the reduced cylinder of X , (I⊗X)/(I⊗{∗}).
Again, this construction has a well-established undirected analogue: maps from the reduced cylinder of
a topological space into another space are pointed homotopies.
Example 4.2. For the computad M of the previous example, the 3-cells a⊗µ and a⊗η take the following
form in the reduced cylinder of M.

,

In the cone of a computad X , one of the copies of X in a cylinder is trivialised by a quotient. After this
analysis, the future cone of X can be seen as the theory of homomorphisms from an arbitrary X-algebra
to the trivial X-algebra. When X is, for instance, the theory of monoids, this happens to capture precisely
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the notion of left action of a monoid, as can most easily be seen by merging the regions beyond a⊗∗ in
Diagram (3).

,

Dually, the past cone captures a notion of right co-action, and reversing cells gives all the usual mirror
variants. Generalising how we obtained (2), we can also construct theories of objects with a compatible
left (co-)action of X and right (co-)action of Y , as a quotient of I⊗X⊗Y .
Remark 4.3. It may be worth observing that, in the compositional style of building algebraic theories,
the “simplest” theories are the ones with the least artificial identifications of cells — hence, the ones with
the most cells, or most “colours”. Thus, for instance, the theory of semigroups arises more naturally as
a quotient of the theory of actions of non-associative operations; or the theory of Frobenius algebras as
a quotient of the theory of objects with a compatible left action of a monoid and right co-action of a
comonoid. This is in contrast with direct, symbolic presentations, where one is led to consider theories
with a small signature as simpler.

5 Smash products: commutativity, bialgebras

When X and Y are two PRO-like computads, hence presentations of algebraic theories in the standard,
narrower sense, we may want to be able to compose them in order to obtain another. Starting from the
tensor product, if aX , aY are the basic object cells of X ⊗Y , the obvious candidate for the new basic cell
is aX ⊗ aY ; thus, we need to quotient out the aX ⊗∗ and ∗⊗ aY . This comes naturally if we work with
pointed spaces.

Definition 5.1. A pointed computad (X ,∗X) is a computad X with a distinguished 0-cell ∗X , its basepoint.
A map of pointed computads f : (X ,∗X)→ (Y,∗Y ) is a map of computads with f (∗X) = ∗Y .

Given two pointed computads (X ,∗X), (Y,∗Y ), their wedge sum is the pointed computad (X ∨Y,∗),
where X ∨Y := (X⊕Y )/({∗X}⊕{∗Y}), and ∗ is the identification of ∗X and ∗Y .

There is an inclusion of computads X ∨Y ⊆ X ⊗Y , given by X 7→ X ⊗{∗Y}, Y 7→ {∗X}⊗Y . The
smash product of X and Y is the pointed computad X ∧Y := (X ⊗Y )/(X ∨Y ), with the image of X ∨Y
through the quotient as basepoint.

Example 5.2. The reduced cylinder of (X ,∗X), mentioned in the previous section, can be described as
the smash product (X ,∗X)∧ (I +1,∗1).

Much like their analogues in topology, the wedge sum and smash product define monoidal structures
on the category Cpt∗ of pointed computads, with (1,∗) and (1+ 1,∗), respectively, as units. We will
sometimes leave the basepoint implicit.

Let S1 be the oriented 1-sphere, that is, the computad

a

with its unique 0-cell as basepoint.



A. Hadzihasanovic 11

Definition 5.3. The reduced suspension of a pointed computad (X ,∗) is the computad ΣX := X ∧S1.
Write σ ∧τ for the image of σ⊗τ through the quotient. Generators of ΣX of dimension d > 0 are in

bijection with generators of X , by the assignment σ 7→ σ ∧a, and ∂ α
n (σ ∧a) = ∂ α

n σ ∧a, for all numbers
n, and α ∈ {+,−}.

The net effect of the suspension on a PRO-like computad X , thus, is just to raise the dimension of
each cell — and, in particular, the dimension of the “objects” — by 1. This is useful when one needs to
compare theories of different basic dimensionality: the multiplication may be represented by a 2-cell in
a theory of monoids M, and by a 3-cell in a theory of commutative monoids Mcomm, yet we want to be
able to identify the two; the solution is to include ΣM, rather than M, in Mcomm.

Next, let us consider the smash product of the theory of monoids with itself, M∧M. The 3-cells µ∧a
and η ∧a are suspensions of a multiplication and unit. In the diagrammatic representation, their arity as
operations is a reflection of the sliding moves changing the number of intersections between diagrams
from one copy of M and the other; these are the only 2-cells of M⊗M that survive the quotient.

:= :=

On the other hand, since a is an odd-dimensional cell, a∧µ and a∧η are suspensions of a co-multiplication
and co-unit.

:= :=

In the tensor product M⊗M, the 4-cell µ ⊗ µ mediates between two ways of sliding diagrams past
each other. In the smash product M ∧M, this becomes the bialgebra law between multiplication and
comultiplication.

µ ∧µ

=

The two 3-cells in the input 3-border should really be decomposed in two more, sliding each multipli-
cation first past one strand, then past the other. The 4-cells µ ∧η , η ∧ µ and η ∧η give the remaining
bialgebra equations.

µ ∧η

,

η ∧µ

,

η ∧η
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Therefore, M∧M is a presentation of the theory of bialgebra. Of course, M∧M contains other higher-
dimensional cells; if α is the associator 3-cell, α ∧ a will be an associator for µ ∧ a, and a∧α a co-
associator for a∧µ; while α ∧µ will be a higher coherence between “associate, then use bialgebra law”
and “use bialgebra law, then associate”, and so on.

Let us now take a look at M ∧Mop, the smash product of the theory of monoids and of the theory
of comonoids. As before, µ ∧ aop and η ∧ aop are a (suspended) multiplication and unit cell; but now
a∧ µop and a∧ηop are also a multiplication and unit. Below, we show what µ ∧ µop and η ∧ηop look
like; the black multiplication and unit represent a∧µop and a∧ηop, respectively.

µ ∧µop

,

η ∧ηop

The first one is a directed version of an interchange law; the second one identifies the two units. By
the Eckmann-Hilton argument [19], a pair of monoids satisfying an interchange law is equivalent to a
single commutative monoid; hence, M∧Mop can be seen as a presentation of the theory of commutative
monoids. Dually, Mop∧M presents the theory of cocommutative comonoids. The defining equations of
all these theories obtain an original topological interpretation in terms of intersecting, sliding diagrams.
Remark 5.4. In [42], it is suggested that directed interchange laws, of the kind just presented, may have
a fundamental role in proof systems for propositional logics: what we have said about potential insights
on algebraic theories coming from our approach may apply to proof systems, and their normalisation
properties, as well.
Remark 5.5. There is a symmetric monoidal structure on the category of symmetric operads — the
Boardman-Vogt tensor product [6] — such that the tensor product of the operad of monoids with itself
is equivalent to the operad of commutative monoids [43]. We have not explored the connection, but by
the results just presented, it seems likely that the two constructions are related, with the non-symmetric
smash product of computads being the more general one.

We conclude by putting all the information together in order to describe how a version of the theory of
interacting bialgebras [7] — the “basic ZX calculus” — can be assembled in the language we developed.

1. Starting from the theory of constants K (either as a given, or as a 2-cube with three faces quotiented
out), we can obtain theories M and Mop of monoids and comonoids by successive cones, and
identifying cells of congruent shape, as shown in Section 3

2. By the discussion in Section 4, we know how to obtain the theory of a compatible left action of
a monoid and right co-action of a comonoid by cones. A theory F of Frobenius algebras results
from the identification of cells of congruent shape. Also letting the comultiplication act on the left,
or the multiplication co-act on the right, allows one to eliminate loops, as in the diagram below —
leading to a theory Fs of special Frobenius algebras.

3. By the results of this section, a theory of commutative, co-commutative bialgebras can be presented
as a smash product of copies of M and Mop, for instance B := M∧M∧M∧M.
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4. To conclude, it suffices to take two copies of B and two copies of Fs, and identify pairs of monoids
and comonoids; since objects are 4-cells in B and 1-cells in Fs, we first need to take the iterated sus-
pension Σ3Fs. Letting A := Σ3(M∨Mop∨M∨Mop), a presentation of the theory IB of interacting
bialgebras is obtained as the pushout

A

B∨B

Σ3(Fs∨Fs)

IB

in the category of pointed computads.

It is, we hope, an indication of the potential of this approach that a presentation of a quite complicated
theory can be achieved without ever adding a single cell “by hand”, from only the directed interval I and
a few, basic operations of topological nature.

6 Conclusions and outlook

In this paper, we introduced a basic language for composing higher-dimensional algebraic theories, em-
bodied by computads, in the way that topological spaces can be composed, and demonstrated how simple
constructions correspond to common algebraic interactions.

This language is able to account for the topological differences between the interactions that produce,
for instance, Frobenius algebras and bialgebras, respectively, from monoids and comonoids, in a way
that earlier compositional frameworks, built in a strictly 2-categorical setting, could not. It seems also
remarkably “inductive”: we showed how to obtain complicated, higher-dimensional coherence diagrams
by performing obvious compositions, and then just calculating. This goes in favour of the framework
having a heuristic value.

Furthermore, every theory we have constructed in this paper has been obtained from copies of the di-
rected interval I through five basic operations: disjoint union, tensor product, identification of congruent
cells, quotient by a subspace, and reversal of cells. By keeping the number of operations contained, we
can hope to prove general theorems of the form

If the theory T is obtained from the theories T1, . . . ,Tn, which have the property P, by the operation
x, then T has the property P′,

and use them to prove interesting facts about interesting theories. By contrast, where cells of arbitrary
shape have to be added by hand, as in [8, 17], it is unclear how one could obtain general results.

There are many directions in which to proceed from here. One path is purely incremental: finding
more examples, analysing different theories containing different interactions, and trying to describe them
in the language of directed topology. As a follow-up to the description of interacting bialgebras, we are
particularly interested in a fully topological account of the ZW calculus [22], including the theory of
Hopf algebras.

On a higher level of abstraction, the ideas of this paper could serve as a link between the use of
homotopical and homological methods in rewriting theory, and the tools of directed and nonabelian
topology developed in monographs such as [20, 11]. Compositionality is a powerful calculational tool
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in algebraic topology, from the Seifert-van Kampen Theorem, to the Mayer-Vietoris Theorem, through
monoidality of homology functors, so there is a clear potential gain in sight. However, we note that both
the latter sources show a clear preference for cubical methods, so a cubical approach to computads might
be required to make calculations simpler.

There is, then, the issue of strictness, which does not allow this sort of computads to directly present
braidings and other intermediate degrees of commutativity, of the kind that has been extensively studied
in the theory of topological operads [33]. This could be tackled by resorting to different, weaker notions
of computad and higher category; otherwise, in the spirit of [23, 24], rather than relying on notions
of weakness “from the outside”, it might be conceptually more rewarding to develop them within the
simpler combinatorics of strict computads, by imposing various representability conditions.

Finally, as picturing things by diagrams becomes harder and harder in high dimensions, a computa-
tional aid may be useful: it could be worth developing an extension of Globular [3] to automatise certain
compositions.
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Appendix A Strict ω-categories

We recall the definition of strict, globular ω-category.

Definition A.1. A strict ω-category C is a set together with unary border operators ∂+
n (output n-border),

∂−n (input n-border), and partial binary compositions #n , for all n≥ 0, satisfying the following axioms:

1. for all σ ,τ in C , σ #n τ is defined if and only if ∂+
n σ = ∂−n τ;

2. whenever both sides are defined, and n 6= m,

(σ #n τ)#n ρ = σ #n (τ #n ρ) (associativity),

σ #n ∂
+
n σ = σ = ∂

−
n σ #n σ (unitality),

(σ1 #n σ2)#m (τ1 #n τ2) = (σ1 #m τ1)#n (σ2 #m τ2) (interchange);

3. for all n,m≥ 0, and α,β ∈ {+,−},

∂
β
m ∂

α
n =

{
∂

β
m , m < n ,

∂ α
n , m≥ n ;

4. whenever σ #n τ is defined, and m 6= n,

∂
−
n (σ #n τ) = ∂

−
n σ ,

∂
+
n (σ #n τ) = ∂

+
n τ ,

∂
α
m (σ #n τ) = ∂

α
m σ #n ∂

α
m τ ;

5. for all σ in C , there is a smallest n, the dimension d(σ) of σ , such that for all m≥ n

∂
−
m σ = σ = ∂

+
m σ .

Elements of C are called cells; a cell of dimension n is an n-cell. For any ω-category C , and n≥ 0, the
n-skeleton Cn of C is the restriction of C to cells of dimension d ≤ n.

Given two ω-categories C , D , a functor f : C → D is a function commuting with border operators
and compositions. Functors and ω-categories form a category ωCat.

http://alessio.guglielmi.name/res/cos/
http://alessio.guglielmi.name/res/cos/
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Appendix B Borders in low dimensions

Let X , Y be two computads, σ ∈ |X |, τ ∈ |Y |. We give explicit expressions for the low-dimensional
borders of σ ⊗ τ , in terms of the borders of σ and τ .

∂
−
0 (σ ⊗ τ) = ∂

−
0 σ ⊗∂

−
0 τ

∂
+
0 (σ ⊗ τ) = ∂

+
0 σ ⊗∂

+
0 τ

∂
−
1 (σ ⊗ τ) = (∂−0 σ ⊗∂

−
1 τ)#1 (∂

−
1 σ ⊗∂

+
0 τ)

∂
+
1 (σ ⊗ τ) = (∂+

1 σ ⊗∂
−
0 τ)#1 (∂

+
0 σ ⊗∂

+
1 τ)

∂
−
2 (σ ⊗ τ) =

(
(∂−0 σ ⊗∂

−
2 τ)#1 (∂

−
1 σ ⊗∂

+
0 τ)

)
#2 (∂

−
1 σ ⊗∂

+
1 τ)#2

(
(∂−2 σ ⊗∂

−
0 τ)#1 (∂

+
0 σ ⊗∂

+
1 τ)

)
∂
+
2 (σ ⊗ τ) =

(
(∂−0 σ ⊗∂

−
1 τ)#1 (∂

+
2 σ ⊗∂

+
0 τ)

)
#2 (∂

+
1 σ ⊗∂

−
1 τ)#2

(
(∂+

1 σ ⊗∂
−
0 τ)#1 (∂

+
0 σ ⊗∂

+
2 τ)

)
∂
−
3 (σ ⊗ τ) =

((
(∂−0 σ ⊗∂

−
3 τ)#1 (∂

−
1 σ ⊗∂

+
0 τ)

)
#2 (∂

−
1 σ ⊗∂

+
1 τ)#2

(
(∂−2 σ ⊗∂

−
0 τ)#1 (∂

+
0 σ ⊗∂

+
1 τ)

))
#3

(
(∂−1 σ ⊗∂

+
2 τ)#2

(
(∂−2 σ ⊗∂

−
0 τ)#1 (∂

+
0 σ ⊗∂

+
1 τ)

))
#3

(
(∂−2 σ ⊗∂

−
1 τ)#2

(
(∂+

1 σ ⊗∂
−
0 τ)#1 (∂

+
0 σ ⊗∂

+
2 τ)

))
#3

((
(∂−0 σ ⊗∂

−
1 τ)#1 (∂

−
3 σ ⊗∂

+
0 τ)

)
#2 (∂

+
1 σ ⊗∂

−
1 τ)#2

(
(∂+

1 σ ⊗∂
−
0 τ)#1 (∂

+
0 σ ⊗∂

+
2 τ)

))
∂
+
3 (σ ⊗ τ) =

((
(∂−0 σ ⊗∂

−
2 τ)#1 (∂

−
1 σ ⊗∂

+
0 τ)

)
#2 (∂

−
1 σ ⊗∂

+
1 τ)#2

(
(∂+

3 σ ⊗∂
−
0 τ)#1 (∂

+
0 σ ⊗∂

+
1 τ)

))
#3

((
(∂−0 σ ⊗∂

−
2 τ)#1 (∂

−
1 σ ⊗∂

+
0 τ)

)
#2 (∂

+
2 σ ⊗∂

+
1 τ)

)
#3

((
(∂−0 σ ⊗∂

−
1 τ)#1 (∂

+
2 σ ⊗∂

+
0 τ)

)
#2 (∂

+
1 σ ⊗∂

−
2 τ)

)
#3

((
(∂−0 σ ⊗∂

−
1 τ)#1 (∂

+
2 σ ⊗∂

+
0 τ)

)
#2 (∂

+
1 σ ⊗∂

−
1 τ)#2

(
(∂+

1 σ ⊗∂
−
0 τ)#1 (∂

+
0 σ ⊗∂

+
3 τ)

))
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