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Abstract

Following on from the notion of (first-order) causality, which gener-
alises the notion of being trace-preserving from CP-maps to abstract pro-
cesses, we give a characterisaton for the most general kind of map which
sends causal processes to causal processes. These new, second-order causal
processes enable us to treat the input processes as ‘local laboratories’
whose causal ordering needs not be fixed in advance. Using this charac-
terisation, we give a fully-diagrammatic proof of a non-trivial theorem:
namely that being causality-preserving on separable processes implies be-
ing ‘completely’ causality-preserving. That is, causality is preserved even
when the ‘local laboratories’ are allowed to have ancilla systems. An im-
mediate consequence is that preserving causality is separable processes
is equivalence to preserving causality for strongly non-signalling (a.k.a.
localizable) processes.

1 Causality and non-signalling

Throughout this extended abstract, we will work in a self-dual compact closed
category C, that is, a symmetric monoidal category which has for every object
a pair of morphisms:

ηA : I → A⊗A εA : A⊗A→ I

which we refer to as cups and caps respectively, satisfying the following ‘yanking’
identities:

(εA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A γA ◦ ηA = ηA εA ◦ γA = εA

where γA : A⊗A→ A⊗A is the symmetry natural isomorphism. Furthermore,
we will adopt string diagram notion for depicting compositions of morphisms
(see e.g. [9]). Using this notion, cups and caps resemble their namesakes:

ηA := εA :=
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and hence the equations above become:

= = =

Note that the monoidal unit I is depicted as empty space. Throughout the
paper, we will think of morphisms in this category as physical processes of some
kind, hence we adopt ‘process-theoretic’ language. Namely, we refer to objects
as systems and morphisms as processes. Furthermore, we give special names to
processes from and to the trivial system:

states := ψ effects :=
π

In addition to the compact closed structure, we also assume C has a distin-
guished effect dA : A→ I for every system A called discarding. This is pictured
as:

dA :=

and is compatible with ⊗ and I as follows:

=dA⊗B = = dA ⊗ dB dI = = 1I

The utility of the discarding process is it enables us to define causality, following
[7, 3]:

Definition 1.1. A process Ψ : A → B is called causal if dB ◦ Ψ = dA, or
pictorially:

Ψ =

The motto for causal processes is therefore:

If we discard the output of a process, it doesn’t
matter which process happened.

In the category whose objects are quantum state spaces and whose mor-
phisms are CP-maps, causality corresponds to being a trace-preserving CP-map,
i.e. a quantum channel.

The utility of causality is that it enables us to use diagrams to represent the
causal relationships between processes [7]. For example, if we wish to express
that Alice can signal to Bob (but not vice-versa!), we can require that a causal
process:

Φ : A1 ⊗A2 → B1 ⊗B2

factorises as:
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Φ =

ΨA

ΨB

where ΨA and ΨB are also causal. Following [6], we see from this factorisation,
that it is indeed impossible for Bob to signal Alice. Indeed, if we discard Bob’s
output (to which Alice does not have access), the whole process disconnects:

Φ =

ΨA

ΨB

ΨA

= Ψ′=:

We say such a process is non-signalling fromB to A, and write A � B. Similarly,
a process is non-signalling from A to B if it factorises as:

Φ =

ΨA

ΨB

and we say it is simply non-signalling if it admits both factorisations.
A typical example of a non-signalling process is a Bell-type scenario. That

is, Alice and Bob share some bipartite state, to which they perform local oper-
ations:

Φ =

ΨA ΨB

ρ

(1)

This clearly admits the two factorisations for A � B and B � A:

ρ

ΨB

ΨA ΨB

ΨA

ρ

so one might ask if in fact all non-signalling processes arise this way. In quantum
theory, surprisingly the answer is no.

Definition 1.2. A morphism is called strongly non-signalling if it factorises as
in equation (1) for some causal morphisms ΨA, ΨB , and ρ.

3



It was shown in [1] that there indeed exist quantum channels which are non-
signalling but not strongly non-signalling (conditions referred to as ‘causal’ and
‘localizable’ in [1], respectively).

2 Second-order causality

Recently, frameworks have been proposed to discuss quantum correlations which
do not necessarily have a fixed causal ordering [8, 4]. Both of these frameworks
rely on the notion of a ‘higher-order quantum channel’ [2], i.e. a mapping which
sends channels to channels. In this section, we will provide a characterisation
of such a map in any compact closed category with discarding.

As is the usual trick in a compact-closed category, we can obtain higher-
order maps by first turning first order maps into states by ‘bending up’ the
input wire:

Φ 7→ Φ

This bending is sometimes called process-state duality, which induces a bijection
between: {

processes Φ : A→ B
}
∼=

{
states Φ̃ : I → A⊗B

}
(2)

Hence, we can express a map which sends a process of type A1 → A2 to a
process of type B1 → B2 as a map of the form:

W

A1 A2

B2B1

:: Φ 7→ W

Φ

Definition 2.1. A process is called second-order causal (SOC) if it sends causal
processes (encoded via process-state duality (2)) to causal processes. Diagram-
matically, W is SOC if for all Φ:

Φ = =⇒ W

Φ

= (3)

It is often more enlightening to write SOC maps using ‘comb’ notation (cf.
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[5]):

W

A1 A2

B2B1

 
A2

A1

B1

B2

W (4)

Then processes are composed from the inside-out, rather than bottom-to-top.
Hence, (3) becomes:

Φ = =⇒ W =Φ

However, processes with just one ‘hole’ are not that interesting, so we will
consider a more interesting kind of second-order causal map, which has two
holes:

Definition 2.2. A process:

W : (A1 ⊗A2)⊗ (B1 ⊗B2)→ C1 ⊗ C2

is called bipartite second-order causal (SOC2) if for all causal ΦA,ΦB :

W ΦBΦA

is causal.

Particularly simple examples of SOC2 maps simply wire ΦA together with
ΦB in some order:

(5)
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However, interestingly, the order that they are wired together is hidden if we
treat W as a black box, and it can be shown (see for example [8]) that we can
even define SOC2 maps which don’t admit any fixed causal order.

It is natural to ask whether separate notions of bipartite (or more generally,
n-partite) second-order causal maps is really necessary. We could, after all,
define an SOC map as in (4) where A1 := X1 ⊗ Y1 and A2 := X2 ⊗ Y2, i.e. of
the form:

X2

X1

B1

B2

W
Y1

Y2

but this is very restrictive since it needs to send any causal map to a causal
map, rather than just separable ones. In fact, the simple example of an SOC2

map which wires two processes together in some fixed order is already not SOC.
Suppose for instance that we plug a (non-separable) swap map into the leftmost
process in (5):

=

Then we introduce a loop, which for most categories C (including CP-maps) will
immediately kill normalisation, and hence causality.

Definition 2.3. We say a category C has enough causal states if: ∀ρ causal .

ρ

Φ
=

ρ

Φ′

 =⇒ Φ = Φ′

Since C is compact closed, we can prove that if C has enough states, it also
has enough separable causal states: ∀ρ1, . . . , ρn causal .

Φ

ρ1 ρn

=

ρ1

Φ′

ρn

· · · · · ·

· · ·· · ·
 =⇒ Φ = Φ′
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because we can simply apply Definition 2.3 one input at a time, via:

Φ

ρ

=

ρ

Φ′
⇐⇒ Φ

ρ

=

ρ

Φ′

3 Second-order causality and non-signalling

Now we are ready to prove the main theorem of this extended abstract and give
a simple corollary.

Theorem 3.1. If a process in a category with enough causal states is SOC2,
then it is ‘completely’ SOC2 in the sense that, for any causal processes:

ΦA : A′1 ⊗A1 → A′2 ⊗A2 ΦB : B′1 ⊗B1 → B′2 ⊗B2

the process:

W ΦBΦA

is causal.

Proof. For any causal states ρA, ρB , the following processes are causal:

ΦA

ρA

ΦB

ρB

(6)

which can be seen just by discarding the respective outputs and applying causal-
ity of ΦA,ΦB , ρA and ρB individually. Then, if W is SOC2, plugging in the
causal maps (6) yields a causal map. Hence, for any ρW , we have:

ρW

W

ρA

ΦBΦA

ρB

=
ρW

=
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Since the process above agrees with discarding for all ρA, ρB , ρW :

ρA ρW ρB

=

we can conclude, using the fact that C has enough causal states (and hence
enough separable causal states) that:

W ΦBΦA =

We can now show that SOC2 processes not only preserve causality for sep-
arable processes, but also for strongly non-signalling processes:

Corollary 3.2. If a process W is SOC2, then it sends every causal, strongly
non-signalling process:

Φ : A1 ⊗B1 → A2 ⊗B2

to a causal process.

Proof. If Φ is strongly non-signalling, it factors as in (1). Then:

W

Φ ΨBΨA

ρ

W

=
ΨB

ρ

=

W

ΨA

= =
(3.1)

ρ

In [4] it is shown that preserving causality for product channels is equiva-
lent to preserving causality for all non-signalling channels. This can be shown
straight-forwardly in the concrete case of CP-maps using the fact that non-
signalling channels always arise as affine combinations of separable channels.
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One could therefore extend the proof above to work for all non-signalling pro-
cesses if we replace ρ with a ‘pseudo-state’ given by, e.g.

r
:=

∑
i

ri |i〉〈i| ⊗ |i〉〈i|

for (possibly negative) coefficients ri summing to 1. Then we still have:

r
=

and we can furthermore realise any affine combination of separable CP-maps
(hence any non-signalling channel) via:

Φ =

ΨA ΨB

r

Then the proof of Corollary 3.2 proceeds identically, replacing ρ with r. How-
ever, this has the undesirable property that we have to go outside of the cate-
gory of ‘physically realisable’ processes to get this (non-positive) pseudo-state
r. Whether one can give a fully diagrammatic proof without resorting to such
tricks is an open question.
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