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Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum

logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various fam-

ilies of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius

algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms;

and both come with their conceptual mysteries. A particularly elegant and mysterious constraint,

imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial

law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by

von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that,

if quantum logic and categorical quantum mechanics are formalized in the same framework, then the

antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect

algebras that the units are each other’s unique complements; and that the modularity law corresponds

to the Frobenius condition. These correspondences lead to the equivalence announced in the title.

Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly

displayed on one side than on the other (such as e.g. the orthogonality). Beyond that, it may also open

up new approaches to deep and important problems of quantum mechanics (such as the classification

of complementary observables).

1 Introduction

That ”nobody understands quantum mechanics” (as Richard Feynman announced) may be the state of

the world. That the standard mathematical formalisms of quantum mechanics contain features that do

not correspond to any features of their subject (as John von Neumann pointed out [33] almost imme-

diately after he published his treatise [25] about those mathematical formalisms) is definitely a social

phenomenon. Von Neumann attacked the problem, and generated quantum logics [26, 5], which became

a popular research area of lattice theory. Many years later, mathematicians and computer scientists at-

tacked the same problem, and generated categorical quantum mechanics [2, 34, 8, 9], which became a

popular research area of category theory. Most recently, an ambitious effort has been initiated to incorpo-

rate both families of structures, and much more, under a new structure called effectus [21, 7]. The present

note is, of course, incomparable with that effort in its scope, but it also attempts to relate two families

of structures, one from quantum logic, the other one from categorical quantum mechanics, and is thus

concerned with a closely related conceptual bridge. Being much smaller, our bridge does not require any

new material: we simply translate between the two languages, and try to align the concepts underlying

the different models that turn out to be structurally equivalent.

More precisely, we relate the realm of effect algebras [4, 15, 18], intended to capture quantum propo-

sitions just like Boolean algebras capture classical propositions, and the realm of Frobenius algebras

[6, 13, 12, 31, 14], used to capture classical data in a quantum universe, viewed as a category. Although

the two research programs have been driven by different goals and realized by substantially different
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mathematical methods, they turn out to lead to equivalent structural components. Understanding this

equivalence means uncovering the common conceptual components underlying both theories. Instanti-

ating Frobenius algebras to the category Rel of sets and relations, and generalizing effect algebras to an

abstract dagger compact category C, we get the equivalences announced in the title of the paper.

Outline of the paper

We begin by defining effect algebras in Sec. 2. As usual, effect algebras are defined as sets with some

partial operations, but the defining conditions are formalized in categorical terms, since our goal is to

align them with the similar conditions that arise in categorical quantum mechanics. Towards this goal,

in the rest of the paper we work with an abstract dagger compact category C. The original definition of

effect algebras is recovered for C =Rel, the category of sets and relations. Since its compactness and the

self-dualities of its objects are an important tool of the analysis, the restriction to partial maps, prominent

in the definition of effect algebras, is not hardwired in the definition of the environment category, but

imposed in the definition of the analyzed structures. Before we get to that restriction, we analyze the

general operation of orthocomplementation in general terms of dagger compactness in Sec. 3,. The

reasons and the tools for the restriction to partial maps are discussed in Sec. 4. The tools boil down

to a small fragment of the categorical theory of maps, described in Sec. 4.2, relative to the convolution

operations in Sec. 4.1. In Sec. 4.3, we finally reach the stage where we can propose a categorical version

of the effect algebra structure. The claim is that the special and the antispecial requirements, that play an

interesting role in categorical quantum mechanics, in fact capture the same structure as effect algebras.

The main claim is Prop. 4.4, which says that special and antispecial algebras (christened superspecial for

this occasion) are just those that satisfy the categorical definition of effect algebras, simply lifted from

sets and partial functions to dagger compact categories. The technical gain from this characterization

is that the superspecial strucutre is a standard piece of categorical algebra, well oiled for diagrammatic

analyses in categorical quantum mechanics, whereas the categorical version of the original definition of

effect algebras involves pullbacks, and requires subtle and often cumbersome arguments, as illustrated

already in the proof of Prop. 4.4. Finally, in Sec. 5, we show that the modularity law, satisfied by some

effect algebras, corresponds to the Frobenius law in superspecial algebras. This not only connects two

laws that are studied extensively in two research areas, but also generalizes the concept of modularity

from sets to dagger compact categories, while providing an intuitive view of the Frobenius law. In Sec. 6,

we comment about applications of the results and about further work suggested by the results.

2 Effect algebras

Background. Effect algebras [4, 15, 18] are an offshoot of the effort towards generalizing classical

propositional logic into a putative quantum logic, initiated by von Neumann [26, 5]. The effort never led

to a logical system in the traditional sense, perhaps because the deduction and abstraction mechanisms

that the logicians use to define such systems, actually characterize classical data in a quantum universe,

whereas quantum data disobey such abstraction mechanisms by their very nature [31]. At the proposi-

tional level, these abstraction mechanisms manifest themselves as the distributivity laws. Without such

laws, quantum logics remained as unintuitive for the logicians as quantum physics has been for the physi-

cists. This provided a business opportunity for some mathematicians and philosophers. Effect algebras

are a result of this opportunity.
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Idea. Quantum propositions, viewed as the elements of an effect algebra, can be thought of as sub-

spaces of a Hilbert space. They are operated on by the quantum logical connectives >,? and ¬, which

are analogous to the classical disjunction ∨, conjunction ∧ and negation ¬. The difference is that any

two classical propositions p and q can be composed into p∨q, p∧q, whereas the quantum propositions

u and v can only be composed into u > v, u ? v if the corresponding Hilbert subspaces are orthogonal;

otherwise these compositions are undefined. The complements ¬u are always defined. The partiality

of the quantum logical connectives > and ? is induced by the fact that non-orthogonal quantum states

cannot be reliably distinguished, which implies that quantum observables, which are denoted by quan-

tum propositions, and reasoned about in quantum logic, can only be formed from orthogonal Hilbert

subspaces. Effect algebras thus attempt to capture the essence of quantum logic in terms of partiality of

quantum logical operations.

Definition 2.1. An effect algebra is a set A together with the partial functions

A×A
>

−→ A
¬
←− A

0

⇔
1

I (1)

where I is a singleton set, and moreover

• (A,>,0) is a commutative monoid,

• the following conditions are satisified for all x,y ∈ A

x> y = 1 ⇐⇒ x = ¬y (2)

x> 1 = 1 ⇐⇒ x = 0 (3)

Remarks. It is easy to see that the above definition is equivalent with the original one in [15]. Proving

that ¬¬x = x, that the partial elements 0,1 : I −→ A must be total, and that ¬ must be a map (total and

single-valued1 are instructive exercises.

A category theorist might interpret the above definition by viewing the effect algebra signature, dis-

played in (1), as a diagram in the category Pfn of sets and partial maps. The requirement that (A,>,0) is

a commutative monoid is expressed by familiar commutative diagrams, and conditions (2) and (3) mean

that the following squares must be pullbacks in Pfn.

I

AA⊗A

A

1〈id,¬〉

!

>

I

AA⊗A
>

0〈0,0〉

I id

(4)

The tensors and the pairing are induced by the cartesian products of sets. The arrow ! : A −→ I is the map

sending all elements of A into the singleton element of I. While the left-hand pullback is easily seen to

capture (2), the right hand pullback actually says that x> y = 0 ⇐⇒ x = 0 = y, which is equivalent with

(3) just because (2) implies that x> 1 = y ⇐⇒ x> 1>¬y = 1 ⇐⇒ x>¬y = 0.

1Here we use maps, or functions, defined as total and single-valued relations in basic set theory. In Sec. 4.2 we shall see

how these definitions extend to much more general categorical frameworks, including dagger-compact categories with classical

structures.
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But a categorical quantum mechanic might be inclined to go even further, and draw the the above

pullbacks as string diagrams:

¬
=

∃!u
∃!u

∀u0

∀u1

>

1

A A

A A

AA

=

>

A A

AA

∀v1∀v1

∀v0

000

U U V V

(5)

The left-hand diagram should be read as saying that for every u0 : U −→ A⊗A and u1 : U −→ I such that

> ◦ u0 = 1 ◦ u1, there is a unique u : U −→ A with u0 = 〈id,¬〉 ◦ u and u1 = ! ◦ u. The left-hand diagram

in (5) just says in string diagrams that the left-hand square in (4) is a pullback. The right-hand diagram

in (5) says that the right-hand square in in (4) is a pullback, and it should be read as saying that every

v0 : V −→ A⊗A and v1 : V −→ I such that >◦ v0 = 0◦ v1, must satisfy v0 = 〈0,0〉 ◦ v1. The unique pullback

factorization must be v1, because the top side of the right-hand square in (4) is the identity.

If these conditions provide a high level view of the ”propositional” operations on quantum observ-

ables, then it seems natural to ask what they mean in the categories different from Pfn, and in particular

in the categorical models of quantum mechanics. The trouble with lifting the above definition is that the

categories used in categorical quantum mechanics usually have very few pullbacks, and that proving that

something is a pullback is often involved. Moreover, Pfn is not an instance of such categories, because

it is not self-dual, and the dualities play a very prominent role in the categorical quantum models.

To circumvent these problems, we now change the angle of attack, and proceed to characterize the

structure of effect algebra in a ”top-down” fashion, in terms of abstract categorical operations.

3 Orthocomplemented algebras

3.1 Dagger-compact categories and classical structures

While effect algebras are normally presented as sets with essentially algebraic structure2 , we now broaden

the scope, and study the components of their structure in the abstract framework of a dagger-compact

category C. The standard definition of effect algebras will be recovered as the special case where C=Rel,

the category of sets and relations, concrete or abstract [6, 16], as used in [17, 20, 29, 31].

The idea of lifting the effect algebra structure beyond sets, and expressing it in abstract categorical

terms, is that studying the effect algebra operations in other models of quantum mechanics, standard

and nonstandard [30], will reveal their relationships with other quantum operations and axiomatizations.

For instance, it seems interesting to ask what is the suitable notion of effect algebra in the framework

of Hilbert spaces. Although the effect algebra operations were conceptualized as an abstraction of the

relevant ”propositional” operations over the families of orthogonal subspaces of a Hilbert space, it is

2An algebraic structure is presented by operations and equations. An essentially algebraic structure is presented by opera-

tions and conditional equations, which are the statements in the form p⇒ q, and p and q are equations. Besides effect algebras,

the examples of essentially algebraic structures include categories and the varieties of categorical algebra, defined by algebraic

theories using functors and natural transformations [3].
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remarkable that these operations are not expressible in the language of Hilbert spaces themselves, or

even in terms of categorical operations over Hilbert spaces. To see this, note that, the category of Hilbert

spaces has very few pullbacks, and that lifting the pullbacks (4), or (5) to Hilbert spaces does not give

usable requirements.

Recall that dagger-compact categories are just compact (closed) categories, going back all the way

to [22], but extended with an additional duality, the dagger functor ‡ : Co −→ C, which commutes with the

compact duality ∗ :Co −→C up to an coherent isomorphism X∗‡ � X‡∗. The standard model is the category

of finite-dimensional complex Hilbert spaces FHilb. One of the main points of working with an abstract

categorical signature, rather than with concrete Hilbert spaces, is that nonstandard and toy models [1, 32,

23, 30, 35] often provide important information. Another point, going back to von Neumann, is that many

features of the Hilbert space structure do not correspond to any features of quantum mechanics that they

are used to describe.3 Presented in terms of the functor X∗ = X∗‡, and equipped with the biproducts, such

categories were proposed as the framework for categorical quantum mechanics in [2]. The biproducts

were eliminated using classical structures in [13]. The availability of classical structures over the objects

of a dagger-compact category is analogous to the availability of bases in the category of Hilbert spaces.

Instantiated to this category, classical structures [13, 12, Def. 2.2] in fact exactly correspond to bases

[14]. Although classical structures are generally not preserved by the morphisms of the surrounding

dagger-compact category (just like the bases are not preserved by linear operators), they do influence

the compact structure, by providing an isomorphism between each object and its dual, and thus allow

us to choose the dual to be X∗ = X, and thus make each object self-dual [12, Prop. 2.4]. The Frobenius

condition imposed on adjoint monoid-comonoid pairs [6] is just another way to express this self-duality

[31, Thm. 4.3]. Yet another expression of the same is an entangled vector I
η
−→ X ⊗ X, i.e. such that

(η‡ ⊗X)◦ (X⊗η) = id [31, Prop. 2.6]. We use such vectors below. Dagger-compact categories with such

self-dualities, or classical structures, playing the role of bases to capture classical data, were studied as

categories of classical structures in [12, Sec. 2.2].

3.2 Orthocomplement

Let A be an object in a dagger-compact category C, given with a classical structure induced by the monoid

A⊗A
∇
−−→ A

!
←−− I

Suppose that, in addition to this classical monoid, we are also given another commutative monoid

A⊗A
>

−−−→ A
0
←−− I

Definition 3.1. A orthocomplement with respect to commutative monoid (A,>,0) is an operation ¬ :

A −→ A such that the equations

>

ι
¬

¬

AA

==

¬

A

AA

(6)

3In terms of categorical semantics, this means that the Hilbert space model is not fully abstract: it always displays some

”irrelevant implementation details” [24].
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hold for some ι ∈ A.

Remark. These equations can be viewed as the string diagrammatic version of

x>¬x = 1 ¬¬x = x

Note, however, that the formal correspondence between the two left-hand side equations depends on the

single-valuedness assumption, which will be discussed in the next section.

It turns out that the orthocomplement operations over a monoid are in bijective correspondence with

the unbiased vectors with respect to it. We first define and then explain what this means.

Definition 3.2. An element ι ∈ A is said to be unbiased with respect to the commutative monoid structure

(A,>,0) if it satisfies the equation

>

ι

A

=

A

>

ι

A

(7)

Explanation. In the terminology of [31, Definitions 2.5 and 5.1], a vector I
ι
−→ A is unbiased with

respect to an algebra with the underlying monoid (A,>,0) in a dagger-compact category just when the

vector I
ι
−→ A

>
‡

−−→ A⊗ A is entangled; and the entanglement is defined by the equation (7). Entangled

vectors are often also called Bell states [12, Sec. 2.1]. Intuitively, a vector I
ϕ
−→ A⊗A is entangled if it

implements an inner product 〈a|b〉 = ϕ‡ ◦ (a∗ ⊗ b) [31, Prop. 2.6], which means that the induced linear

operator A
ϕ̂
−→ A is unitary [31, Prop. 5.2(a)]. Def. 3.2 is also equivalent to [8, Def. 7.13] up to a scalar.

Proposition 3.1. The orthocomplement operations A
¬
−→ A with respect to a monoid (A,>,0) are in a

bijective correspondence with its unbiased vectors I
ι
−→ A.

Proof. Given an orthocomplement, conditions (6) immediately imply

¬

A

>

ι

=

A

A

and

A

ι

A

¬

A

=

0

which shows that the orthocomplement ¬ and the element ι uniquely determine each other. But if the

orthocomplement satisfies the left hand equation, then it is easy to see that (7) holds if and only if ¬¬= id,

as in (6). �

Definition 3.3. An orthocomplemented monoid over a classical object A is a tuple (A,>,0,1,¬), where

• (A,>,0) is a commutative monoid,

• 1 is an unbiased vector, and

• ¬ is the induced orthocomplementation.
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Proposition 3.2. If (A,>,0,1,¬) is an orthocomplemented monoid, then (A,?,1,0,¬) is also an ortho-

complemented monoid, where

x? y = ¬(¬x>¬y)

The other way around, the orthocomplemented monoid (A,?,1,0,¬) also determines (A,>,0,1,¬) by

x> y = ¬(¬x?¬y)

Definition 3.4. An orthocomplemented algebra over a classical object A is the structure (A,>,?,0,1,¬),

where (A,>,0,1,¬) and (A,?,1,0,¬) are orthocomplemented monoids related by De Morgan’s laws as

in Prop. 3.2.

Comment. On one hand, orthocomplemented algebras can be thought of as a generalization of Boolean

algebras, which also have involutive negation and satisfy De Morgan’s laws, and are indeed a special case.

But on the other hand, they are a very special case, as some of the main features of Boolean algebras

do not survive in orthocomplemented algebras, and make room for the main features of effect algebras.

An orthocomplemented algebra structure is derived over an arbitrary commutative monoid (A,>,0) from

an arbitrary unbiased element ι ∈ A, which becomes 1, and determines ¬ and ?. The monoid is thus

not extended by any new elements, but the structure of orthocomplemented algebra is derived from the

monoid as it is — by the magic of the entanglement engendered from the unbiased element.

Truth be told, though, the monoid (A,>,0) cannot be completely arbitrary without causing degenera-

cies. For instance, if we take (A,>,0) to be a classical monoid (A,∇, !), giving rise to a special commu-

tative Frobenius algebra, then the induced orthocomplement ¬ boils down to the identity and the whole

structure collapses to ? = ∇ =>, with x>¬x = ¬x = x. Many other monoids (A,>,0), different from the

classical ones, also cause degeneracies. To avoid that, we must impose some special requirements, and

some antispecial requirements.

4 Special, antispecial and superspecial algebras

4.1 Convolution

Every internal monoid B⊗B
µ
−→ B

ι
←− I in a monoidal category C induces an external monoid on the vectors

(states) of type B, with the same unit, and

⋆µ : C(I,B)×C(I,B) −→ C(I,B) (8)

〈x,y〉 7→ µ◦ (x⊗ y) (9)

Dually, any internal comonoid A⊗A
λ
←− A

ǫ
−→ I induces an external monoid on the covectors (effects) of

type A, with the same counit and

λ⋆ : C(A, I)×C(A, I) −→ C(A, I) (10)

〈u,v〉 7→ (u⊗ v)◦λ (11)

Putting the two together, any comonoid-monoid pair

〈
I
ǫ
←− A

λ
−→ A⊗A, B⊗B

µ
−→ B

ι
←− B

〉
induces a convo-

lution monoid

λ⋆µ : C(A,B)×C(A,B) −→ C(A,B) (12)

〈 f ,g〉 7→ µ◦ ( f ⊗g)◦λ (13)
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with the unit A
ǫ
−→ I

ι
−→ B.

Definition 4.1. A convolution algebra in a monoidal category C is the tuple (A,µ, ι,λ, ǫ), where (A,µ, ι)

is an abelian4 monoid and (A,λ, ǫ) is an abelian comonoid. A convolution monoid ⋆ = µ⋆λ : C(A,A)×

C(A,A) −→ C(A,A) is induced by a convolution algebra as in (12), or as in the following string diagram

f

A

µ

=

AA

⋆ g

A A

f g

A

λ

Definition 4.2. A convolution algebra (A,µ, ι,λ, ǫ) is called

i. special if id⋆id is unitary, and

ii. antispecial if id⋆id is a scaled projector.

Remarks. Recall that an endomorphism e is

i. unitary when e◦ e‡ = e‡ ◦ e = id;

ii. a scaled projector when e = a◦b‡ for some vectors a and b.

In addition to (8), any internal monoid (B,µ, ι) also induces the Cayley representation

Υ : C(B) −→ C(B,B)

b 7→ µ◦ (b⊗B)

When this monoid is a part of a classical structure, then with respect to this structure, the vector b is

i. unbiased if and only if Υb is a unitary, and

ii. a basis vector if and only if Υb is a pure projector.

This is spelled out in [8, 31, Prop. 5.2]

Examples. Every classical structure (A,∇, ¡,∆, !) induces a convolution algebra [12]. When C = FHilb,

then classical structures correspond to bases [14], which induce the representations of morphisms f ,g ∈

FHilb(A,B) as matrices and f⋆g =
(

fi j ·gi j

)
n×m

is the entrywise multiplication of the matrix representa-

tions f =
(

fi j

)
n×m

and g =
(
gi j

)
n×m

. When C = Rel, then classical structures are disjoint unions of abelian

groups [29]. With the additive notation for these group structures, the convolution of relations is

a
(
R⋆S
)
b ⇐⇒ ∃uv ∈ A ∃xy ∈ B. u+ v = a ∧ uRx ∧ vS y ∧ x+ y = b

The standard classical structures in Rel can be viewed as the disjoint unions of the trivial group Z1, and

for these standard classical structures, the convolution boils down to the intersection, i.e. R⋆S = R∩S .

4The commutativity requirement is usually not imposed on convolutions. Here we only work with abelian monoids and

comonoids, so we restrict the usual definition of convolution to avoid repeating the requirement.
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Remark. If every object in a dagger-compact category C have classical structures (like, e.g., all vector

spaces have bases), then the induced convolutions make all hom-sets C(A,B) into abelian groups. This

does not make C into an abelian category, because these convolutions are generally not preserved under

composition. E.g., the relations P ; (R∩S ) and (P ;R)∩ (P ;S ) coincide only if the relation P is single-

valued, i.e. a partial map.

It turns out that effect algebras are defined in terms of partial functions with a good reason.

4.2 Maps

Definition 4.3. The convolution preorder induced by ⋆ : C(A,B)×C(A,B) −→ C(A,B) is the transitive

reflexive relation ≤ on C(A,B) defined by

f ≤ g ⇐⇒ ∃ℓ ∈ C(A,B). f⋆ℓ = g

Definition 4.4. Let C be a dagger-compact category with fixed classical structures on the objects A and

B. Then a morphism f ∈ C(A,B) is said to be

i. total if idA ≤ f ‡ ◦ f

ii. single-valued (or a partial map) if f ◦ f ‡ ≤ idB

iii. a map if it is total and single-valued.

In a bicategory C, a 1-cell f ∈C(A,B) is called a map if it has a right adjoint f ‡ ∈ C(B,A). Remarkably,

the maps within an arbitrary bicategory form an ordinary category. In particular, restricted to partial

maps, the convolution preorder becomes a partial order, in the sense that ( f ≤ g ∧ g ≤ f ) =⇒ f = g;

and restricted to total maps, it becomes discrete, in the sense that f ≤ g =⇒ f = g. This remains true in

a large family of bicategories [27, 28]. Here we do not need such results in full generatlity, but only the

following lemma, instantiated to convolution preorders.

Lemma 4.1. For partial maps f ,g ∈ Csv(A,B) the following holds

=f g
f

g‡

=f g f f g⇐⇒and = (14)

If a dagger-compact category C admits a classical structure on every object, a fixed family of chosen

convolution preorders on all hom-sets give rise to a cartesian bicategory [6]. The following proposition

is proved in [6, Thm. 1.6, Lemma 2.5].

Proposition 4.2. In the cartesian bicategory C induced by a dagger-compact category (with fixed clas-

sical structures and the induced convolution preorders), the following equivalences hold for every mor-

phism f ∈ C(A,B)

i. f is total if and only if !B ◦ f = !A;

ii. f is single-valued if and only if ∆B ◦ f = ( f ⊗ f )◦ ∆A

iii. f is a map if and only if it is a comonoid morphism between the classical structures on A and B.
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4.3 Effect algebras are superspecial

One direction of the following proposition follows directly from the definition of single-valuedness. The

other direction, also requires the observation that every comonoid, and every monoid dual, must be total.

Proposition 4.3. A commutative monoid (A,>,0) in a dagger-compact category C with classical struc-

tures is single-valued with respect to these structures if and only if the induced convolution algebra

(A,>,0,>‡,0‡) is special.

The specialty requirement thus lifts to general dagger-compact categories the set theoretic restriction

of effect algebras to partial maps, which was imposed in the original definition, and in Def. 2.1. The

antispecialty requirement lifts the rest of that definition to dagger-compact categories. Comments and

structural analyses of the relation of the special and the antispecial requirements can be found in [11, 19].

Definition 4.5. An orthocomplemented algebra (A,>,?,0,1,¬) in a dagger-compact category C is said

to be superspecial if it satisfies the following conditions:

(a) the convolution algebra (A,>,0,>‡,0‡) is special, (or equivalently,

the convolution algebra (A,?,1,?‡,1‡) is special), and

(b) the convolution algebra (A,>,0,?‡,1‡) is antispecial.

Definition 4.6. Let C be a symmetric monoidal category with a chosen classical structure on every

object. Let Csv be the subcategory of single-valued morphisms with respect to these classical structures.

An effect algebra in C is a diagram (1) in Csv, such that (A,>,0) is a commutative monoid, and such that

the diagrams in (5) are pullbacks.

Proposition 4.4. An orthocomplemented algebra (A,>,?,0,1,¬) in a dagger-compact category C is

superspecial (in the sense of Def. 4.5) if and only if (A,>,0,1,¬) is an effect algebra in C (in the sense

of Def. 4.6).

Proof. Since the equivalence between the specialty requirement and the partial map restriction is clear,

the task boils down to proving the equivalence between the antispecialty requirement and the pullback

conditions from Sec. 2. In the context of sets and partial functions of Def. 2.1, the idea is that conditions

(2-3) hold if and only if x> y = u and x? y = v just when u = 1 and v = 0.

To prove this in the context of a dagger-compact category C, first note that the square

AA⊗A

A

¬¬⊗¬

>

?

A⊗A

(15)

is a pullback. Composing the left-hand square of diagram (4) with this pullback, and using the commu-

tativity of the monoids, we conclude that all of the following three squares are pullbacks if and only if

any of them is a pullback.

AA⊗A

A

1〈id,¬〉

!

>
AA⊗A

A
!

A⊗A

!
I I

⇐⇒ ⇐⇒

A⊗A

0〈id,¬〉

?
A⊗A⊗A⊗A

I

〈π0,¬,π1,¬〉 〈1,0〉

>⊗?
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Towards the third square, we prove the first equation in the following diagram.

¬

=

>

1

¬

>

0

?

? ω

¬

>

¬

?

1 0

ω

= (16)

where =

> ?

ω . But since the second equation in that diagram also holds, the uniqueness part

of the pullback condition implies that the factorizations in the dashed rectangles must be equal, i.e.

=
1

>
0

?

ω

(17)

Dualizing both sides yields the antispecialty:

=

1
>

0

?

ω (18)

To complete the proof, we proceed to transform the left-hand side of (16). Since > and ? are single-

valued, Prop.4.2ii. says that we can we can distribute each of them above the black dots on the left-hand

side of (16). Applying the associativity, the left-hand side of (16) is transformed into the left-hand side

of the following equation.

¬

=

>

¬

>

?

?

> ? > ?

¬ ¬

(19)
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The right-hand side is a path around the third pullback in (15). Factoring the left-hand side through the

pullback, postcomposing one of the branches with ¬, and reducing ? to > precomposed and postcom-

posed with ¬s, we get

¬

=

>

¬

> ?

>

>

¬¬

> ?

>

> >

=

>

1 0 (20)

from which the result follows using the second pullback of (4) and (5). �

5 Frobenius and modularity

In lattice theory, the modularity condition is usually written in the form

x ≤ z =⇒ (x∨ y)∧ z = x∨ (y∧ z)

In an effect algebra, x> y is defined if and only if x ≤ ¬y, whereas y? z is defined if and only if ¬y ≤ z,

where u ≤ w abbreviates ∃v. u > v = w. Both x > y and y ? z are thus defined if and only if x ≤ ¬y ≤ z.

The modularity law for effect algebras is thus

x ≤ ¬y ≤ z =⇒ (x> y)? z = x> (y? z) (21)

The following definition, stated in an arbitrary dagger-compact category C, is equivalent to (21) when

restricted to partial functions, i.e. to single-valued morphisms in C = Rel.

Definition 5.1. A convolution algebra (A,>,0,?,1) over a self-dual object A in a dagger-compact cate-

gory C is said to be modular when the following equation holds

=

>

>

?

? > ?
(22)
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Explanation. The inputs of the morphisms on both sides of (22) correspond to x and z of (21). The

equation says that the range where its left-hand side provides an output coincides with the range where

its right-hand side provides an output. The right-hand morphism provides an output whenever there is y

such that both x>y and y?z are defined. When > and ? are single-valued, then according to Lemma 4.1,

the left-hand morphism provides an output whenever (x> y)? z and x> (y? z) are equal.

Definition 5.2. A convolution algebra (A,>,0,?,1) over a self-dual object A in a dagger-compact cate-

gory C is said to satisfy the Frobenius condition when the following equation holds

>

=

>

?

?

(23)

The following lemma is proved by straightforward geometric transformations using the duality on A.

Lemma 5.1. For a convolution algebra (A,>,0,?,1) over a self-dual object A in a dagger-compact

category C, each of the following two equations is equivalent with the Frobenius condition.

= > ?> ? = > ?> ? (24)

Lemma 5.2. If the convolution algebra (A,>,0,?,1) over a self-dual object A in a dagger-compact

category C consists of single-valued operations, then the Frobenius condition is also equivalent with

equation (22).

Proof. We use Lemma 4.1. Let f be the right-hand side of the second equation of (24); let g be the

left-hand side of (24). Lemma 4.1 says that f = g if and only if ! ◦
(
(g‡ ◦ f )⋆id

)
= f⋆g = ! ◦ f . But it is

easy to see that !◦
(
(g‡ ◦ f )⋆id

)
reduces to the left-hand side of (22), whereas !◦ f is the right hand side

of (22). Equation (22) thus holds if and only if the second equation of (24) holds. �

Remark. The correspondence between the modularity and the Frobenius condition is reflected in the

geometry of the left-hand diagram of (22): drawing a vertical line through the middle of this diagram

splits it into two sides of the modularity condition; drawing a horizontal line through the middle of this

diagram splits it into two sides of the Frobenius condition.

Corollary 5.3. A superspecial algebra (A,>,?,0,1,¬) over a self-dual object A in a dagger-compact

category C satisfies the Frobenius condition if and only if it is modular.

6 Further work

The first task is to extend the correspondences between (modular) effect algebras and (Frobenius) su-

perspecial algebras, spelled out in Propositions 4.4 and 5.3 into functors between the corresponding

categories. The different components were built into these different structures to capture different con-

cepts. The fact that these different conceptual components, when combined, lead to equivalent categories
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suggests that there are underlying conceptual connections that may be of interest. What is the connec-

tion between the entanglement type of the W-state, realized by the antispecial law on one side, and the

sharpness of the units of the effect algebra operations on the other side?

Another immediate task is to lift the characterization of (modular) effect algebras as (Frobenius)

superspecial algebras from the concrete category Rel of sets and relations, where effect algebras seem

to normally live, to the abstract framework of dagger-compact categories, where the usual pointwise

definition of effect algebras cannot be stated. If we define an effect algebra in a dagger-compact cate-

gory to be a superspecial algebra, then the convenient and intuitive language of effect algebras (suitably

extended by the scalar factors, which are trivial in Rel) becomes available not only in the richer nonstan-

dard models of quantum mechanics [30], but ironically even in the standard Hilbert space model, whose

relevant features were originally intended to be separated from the irrelevant ones by the language of

effect algebras.

Last but not least, since every superspecial Frobenius algebra implements a GHZ/W-pair of [10], and

every GHZ/W-pair implements a Z/X-pair of complementary observables, modular effect algebras in any

of these frameworks may provide a useful new mathematical interface to complementary observables.
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[12] Bob Coecke, Éric Oliver Paquette & Dusko Pavlovic (2009): Classical and quantum structuralism. In Simon

Gay & Ian Mackie, editors: Semantical Techniques in Quantum Computation, Cambridge University Press,

pp. 29–69.

http://dx.doi.org/10.4204/EPTCS.52.4
http://dx.doi.org/10.4204/EPTCS.52.4


D. Pavlovic and P.-M. Seidel 15

[13] Bob Coecke & Dusko Pavlovic (2007): Quantum measurements without sums. In G. Chen, L. Kauffman &

S. Lamonaco, editors: Mathematics of Quantum Computing and Technology, Taylor and Francis, p. 36pp.

Arxiv.org/quant-ph/0608035.

[14] Bob Coecke, Dusko Pavlovic & Jamie Vicary (2013): A new description of orthogonal bases. Math. Struc-

tures in Comp. Sci. 23(3), pp. 555–567. Arxiv.org:0810.0812.

[15] David J Foulis & Mary Katherine Bennett (1994): Effect algebras and unsharp quantum logics. Foundations

of Physics 24(10), pp. 1331–1352.

[16] Peter Freyd & Andre Scedrov (1990): Categories, Allegories. Mathematical Library 39, North-Holland.

[17] Stefano Gogioso (2015): A Bestiary of Sets and Relations. In Chris Heunen, Peter Selinger & Jamie Vi-

cary, editors: Proceedings QPL 2015, Electronic Proceedings in Theoretical Computer Science 195, Open

Publishing Association, pp. 208–227.

[18] Stanley Gudder (1997): Effect test spaces and effect algebras. Foundations of Physics 27(2), pp. 287–304.

[19] Amar Hadzihasanovic (2015): A Diagrammatic Axiomatisation for Qubit Entanglement. In:

30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,

July 6-10, 2015, IEEE Computer Society, pp. 573–584, doi:10.1109/LICS.2015.59. Available at

http://dx.doi.org/10.1109/LICS.2015.59.

[20] Chris Heunen & Sean Tull (2015): Categories of relations as models of quantum theory. In Chris Heunen,

Peter Selinger & Jamie Vicary, editors: Proceedings of QPL 2015, Electronic Proceedings in Theoretical

Computer Science 195, Open Publishing Association, pp. 247–261.

[21] Bart Jacobs (2015): New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic.

Logical Methods in Computer Science 11(3).

[22] G. Max Kelly & Manuel L. Laplaza (1980): Coherence for compact closed categories. Journal of Pure and

Applied Algebra 19, pp. 193 – 213.

[23] N. David Mermin (1985): Is the moon there when nobody looks? Reality and the quantum theory. Physics

Today, pp. 38–47.

[24] Robin Milner (1977): Fully abstract models of typed λ-calculi. Theoretical Computer Science 4(1), pp. 1 –

22.

[25] John von Neumann (1955): Mathematical Foundations of Quantum Mechanics. Investigations in physics,

Princeton University Press.

[26] John von Neumann (1960): Continuous Geometry. Princeton Landmarks in Mathematics and Physics,

Princeton University Press.

[27] Dusko Pavlovic (1995): Maps I: relative to a factorisation system. J. Pure Appl. Algebra 99, pp. 9–34.

[28] Dusko Pavlovic (1996): Maps II: Chasing diagrams in categorical proof theory. J. of the IGPL 4(2), pp.

1–36.

[29] Dusko Pavlovic (2009): Quantum and classical structures in nondeterministic computation. In Peter Bruza,

Don Sofge & Keith van Rijsbergen, editors: Proceedings of Quantum Interaction 2009, Lecture Notes in

Artificial Intelligence 5494, Springer Verlag, pp. 143–158. Arxiv.org:0812.2266.

[30] Dusko Pavlovic (2011): Relating toy models of quantum computation: comprehension, complementarity and

dagger autonomous categories. E. Notes in Theor. Comp. Sci. 270(2), pp. 121–139. Arxiv.org:1006.1011.

[31] Dusko Pavlovic (2012): Geometry of abstraction in quantum computation. Proceedings of Symposia in

Applied Mathematics 71, pp. 233–267. Arxiv.org:1006.1010.

[32] C. H. Randall & D. J. Foulis (1970): An Approach to Empirical Logic. The American Mathematical Monthly

77(4), pp. 363–374.
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