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Furber and Jacobs have shown in their study of quantum computation that the category of commu-
tative C*-algebras and PU-maps (positive linear maps which preserve the unit) is isomorphic to the
Kleisli category of a comonad on the category of commutative C*-algebras with MIU-maps (linear
maps which preserve multiplication, involution and unit). [3]]

In this paper, we prove a non-commutative variant of this result: the category of C*-algebras and
PU-maps is isomorphic to the Kleisli category of a comonad on the subcategory of MIU-maps.

A variation on this result has been used to construct a model of Selinger and Valiron’s quantum
lambda calculus using von Neumann algebras. [[1]

The semantics of a non-deterministic program that takes two bits and returns three bits can be
described as a multimap (= binary relation) from {0,1}> to {0,1}. Similarly, a program that takes
two qubits and returns three qubits can be modelled as a positive linear unit-preserving map from
M; ® My ® M; to My ® M,, where M, is the C*-algebra of 2 x 2-matrices over C.

More generally, the category Sety, ;i of multimaps between sets models non-deterministic programs
(running on an ordinary computer), while the opposite of the category Cpy; of PU-maps (positive linear
unit-preserving maps) between C*-algebras models programs running on a quantum computer. (When
we write “C*-algebra” we always mean “C*-algebra with unit”.)

A multimap from {0,1}? to {0,1}? is simply a map from {0,1}* to £2({0,1}?). In the same
line Set,,yii is (isomorphic to) the Kleisli category of the powerset monad &2 on Set. What about Cp;?

We will show that there is a monad Q on (Cyy;)°P, the opposite of the category Cyyy; of C*-algebras
and MIU-maps (linear maps that preserve the multiplication, involution and unit), such that (Cg,)P is
isomorphic to the Kleisli category of Q. We say that (Cfy;)°P is Kleislian over (C{yy;)°P. So in the same
way we add non-determinism to Set by the powerset monad 7 yielding Setyuii, we can obtain (Cpy;)°P
from (Cyypy)°P by a monad Q.

Let us spend some words on how we obtain this monad Q. Note that since every positive element
of a C*-algebra <7 is of the form a*a for some a € &/ any MIU-map will be positive. Thus Cy;y; is a
subcategory of Cpy;. Let U: Cyyy — Cpyy be the embedding.

In Section[llwe will prove that U has a left adjoint F: Cf; — Cyypy» see Theorem[3l This adjunction
gives us a comonad Q := FU on Cyyy (which is a monad on (Cjyyy;)°P) with the same counit as the
adjunction. The comultiplication & is given by 0, = Fny ., for every object .7 from Cy;; where 7 is
the unit of the adjunction between F and U.

In Section 2] we will prove that (Cj;)° is isomorphic to Z ¢(FU) if FU is considered a monad
on (Cyyp) . In fact, we will prove that the comparison functor L: # ¢(FU) — (Cfy)°P (which sends
aMIU-map f: FUY — BtoUfonyy: Uyl — UZB) is an isomorphism, see Corollary

The method used to show that (Cf;)°P is Kleislian over (Cyy;)°P is quite general and it will be
obvious that many variations on (Cp;)° will be Kleislian over (Cyy;)°P as well, such as the opposite
of the category of subunital completely positive linear maps between C*-algebras. The flip-side of this
generality is that we discover preciously little about the monad Q which leaves room for future inquiry
(see Section [3)).
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2 Quantum Programs as Kleisli Maps

We will also see that the opposite (W cp;) of the category of normal completely positive subunital
maps between von Neumann algebras is Kleislian over the subcategory (W )P of normal unital -
homomorphisms. This fact is used in [1] to construct an adequate model of Selinger and Valiron’s
quantum lambda calculus using von Neumann algebras.

1 The Left Adjoint

In Theorem [5]we will show that U has a left adjoint, F': C§y; — Cpy. using a quite general method. As
a result we do not get any “concrete” information about F in the sense that while we will learn that for
every C*-algebra <7 there exists an arrow p: &/ — UF .o/ which is initial from 7 to U we will learn
nothing more about p than this. Nevertheless, for some (very) basic C*-algebras <7 we can describe F .o/
directly, as is shown below in Example

Example 1. Let us start easy: C will be mapped to itself by F, that is:

the identity p: C — UC is an initial arrow from C to U (—).

Indeed, let .o/ be a C*-algebra and let 6: C — U7 be a PU-map. Then ¢ must be given by (1) =24 -1
for A € C, where 1 is the identity of 7. Thus ¢ is a MIU-map as well. Hence there is a unique MIU-map
6: C — o/ (namely 6 = o) such that 6 op = o. (C is initial in both Cy;; and Cpy;.)

Example 2. The image of C? under F will be the C*-algebra C[0, 1] of continuous functions from [0, 1]
to C. As will become clear below, this is very much related to the familiar functional calculus for C*-
algebras: given an element a of a C*-algebra &/ with 0 < a <1 and f € C[0,1] we can make sense
of “f(a)”, as an element of <7

The map p: C* — UCI0,1] given by, for A,u € C, x € [0,1],

p(A,1)(x) = Ax+ p(l—x)

is an initial arrow from C* to U.
Let 6: C?> — U</ be a PU-map. We must show that there is a unique MIU-map &: C[0,1] — </ such
that c =G op.

Writing a := ¢(1,0), we have 6(A,u) = Aa+ u(1l —a) for all A, u € C. Note that (0,0) < (1,0) <
(1,1) and thus 0 < a < 1. Let C*(a) be the C*-subalgebra of <7 generated by a. Then C*(a) is commuta-
tive since a is positive (and thus normal). Given a MIU-map ®: C*(a) — C we have w(a) € [0, 1] since
0<a< 1. Thus @ +— ®(a) gives amap j: XC*(a) — [0, 1], where XC*(a) is the spectrum of C*(a), that
is, £C*(a) is the set of MIU-maps from C*(a) to C with the topology of pointwise convergence. (By
the way, the image of j is the spectrum of the element a.) The map j is continuous since the topology
on XC*(a) is induced by the product topology on CC€ (@), Thus the assignment / — ho j gives a MIU-map
Cj: C[0,1] — CXC*(a). By Gelfand’s representation theorem there is a MIU-isomorphism

y: C*(a) — CXC*(a)
given by y(b)(@) = w(b) for all b € C*(a) and ® € XC*(a). Now, define
G:=7'oCj: C[0,1] — C*(a) — .

(In the language of the functional calculus, G maps f to f(a).) We claim that G op = o. It suffices to
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show that Cjop =yoGop =7yoo. Let A,u € C and @ € XC*(a) be given. We have

(Cjop)(A,u)(®) = (Cj)(p(A,1))()
= p(d,u)(j(®)) by def. of Cj
= Aj(®) +u(l—j(®))  bydef. of p
= Aw(a) + pu(1 — w(a)) by def. of j

= o(Aa+u(l—a)) as @ is a MIU-map
= o(o(A,u)) by choice of a
= y(o(d,1)) (o). by def. of y

= (voo)(4,u)(®).

It remains to be shown that G is the only MIU-map 7: C[0, 1] — </ such that Utop = ©. Let T be such
a map; we prove that T =G. By assumption 7 and G agree on the elements f € CJ0, 1] of the form

flx) = Ax+ p(l—x).

In particular, G and T agree on the map 4: [0, 1] — C given by h(x) =
Now, since 6 and T are MIU-maps and h generates the C*-algebra C|0, 1] (this is Weierstrass’s
theorem), it follows that ¢ = 1.

Example 3. The image of C> under F will not be commutative, or more formally:
Ifp: C' — U is an initial map from C> to U, then A is not commutative.
Suppose that Z is commutative towards contradiction. Let o7 be a C*-algebra in which there are positive
ai, ap, az such that aja; # aa; and a; +ar +az = 1.
(For example, we can take <7 to be the set of linear operators on C? and let

ay = 1/2P1 ay = 1/2P+ a3 = I — l/2P1 — 1/2P+
where P; denotes the orthogonal projection onto {(0,x): x € C} and P, is the orthogonal projection
onto { (x,x): x€ C}.)
Define f: C3 — o by, for all A;,1,,A3 € C,
A, 22,43) = har + hay + Azas.

Then it is not hard to see that f a PU-map. So as 4 is the initial arrow from C> to U there is a (unique)
MIU-map f: % — </ such that fop = f. We have

ar-ay = f(1,0,0)- f(0,1,0)
= f(p(1,0,0)) - f(p(0,1,0))
= f(p(1,0,0) - p(0,1,0))
= f(p(0,1,0) - p(1,0,0)) because Z is commutative
= f(p(0,1,0)) - f(p(1,0,0))
= ay-a.

This contradicts a; - ax # a» - a;. Hence 4 is not commutative.
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Remark 4. Before we prove that the embedding Cyy; — Cpy has a left adjoint F (see Theorem [3)) let
us compare what we already know about F' with the commutative case. Let CCyyy; denote the category
of MIU-maps between commutative C*-algebras and let CCpy; denote the category of PU-maps between
commutative C*-algebras. From the work in [3] it follows that the embedding CCyy; — CCpyy has a left
adjoint F" and moreover that F’ <7 = CStat.e/, where Stat.«/ is the topological space of PU-maps from .o/
to C with pointwise convergence and CStat.e/ is the C*-algebra of continuous functions from Stat.e to C.

Let x € [0,1]. Then the assignment (A, 1) — xA + (1 —x)u gives a PU-map x: C> — C. It is not
hard to see that x — X gives an isomorphism from [0, 1] to StatC?. Thus F’C? =2 C[0, 1]. Hence on C? the
functor F and its commutative variant F’ agree (see Example 2). However, on C? the functors F and F’
differ. Indeed, F'C? is commutative while FC? is not (see Example [3).

FI
P S

CCyy L+ CCpy

oy

* *
Cviv L+ Cpy
~—— 7

Roughly summarised: while in the diagram above the right adjoints commute with the vertical embed-
dings, the left adjoints do not.

Theorem 5. The embedding U : Cyyy — Cpy has a left adjoint.

Proof. By Freyd’s Adjoint Functor Theorem (see Theorem V.6.1 of [6]) and the fact that all limits can
be formed using only products and equalisers (see Theorem V.2.1 and Exercise V.4.2 of [6]]) it suffices to
prove the following.

(i) The category Cyyy has all small products and equalisers.
(ii) The functor U : Cyy; — Cpy preserves small products and equalisers.

(iii) Solution Set Condition. For every C*-algebra <7 there is a set I and for each i € I a PU-map
fi: & — of; such that for any PU-map f: of — % there is an i € I and a MIU-map h: of; — XA
such that ho f; = f.

Conditions [()|and [(i1)| can be verified with routine so we will spend only a few words on them (and leave
the details to the reader). To see that Condition [(ii)| holds requires a little more ingenuity and so we will
give the proof in detail.

(Conditions [(i)] and Let us first think about small products in Cyy; and Cpy.

Let I be a set, and for each i € I let o7 be a C*-algebra.

It is not hard to see that cartesian product [];c; < is a x-algebra when endowed with coordinate-wise
operations (and it is in fact the product of the .7 in the category of *-algebras with MIU-maps, and with
PU-maps).

However, [];c; ¢ cannot be the product of the 27 as C*-algebras: there is not even a C*-norm on
[Lie; <7 unless <7 is trivial for all but finitely many i € I. Indeed, if || — || were a C*-norm on [[;c; <,
then we must have |6 (i)|| < ||o|| for all o € [[;c; ¢ and i € I, and so for any sequence i, i, ... of
distinct elements of / for which <7, <7, , ... are non-trivial, and for every ¢ € [[;¢; <% with o (i,) =n-1
for all n, we have n = ||o(i,)|| < ||o]| for all n, so ||G|| = e, which is not allowed.

Nevertheless, the x-subalgebra of [],;; % given by

DBic; = { o €lics @2 supie/||o(i)]| < +oo }



A.A. Westerbaan 5

is a C*-algebra with norm given by, for o € @,; %,

o]l = supic; [l (D)]]-

We claim that @;; < is the product of the .27 in Cjy; (and in Cyyp)).

Let € be a C*-algebra, and for each i € I, let f;: € — of; be a PU-map. We must show that there
is a unique PU-map f: ¢ — @, % such that w0 f = f; for all i € I where 7;: @ ;c; o/ —  is the
i-th projection. It is clear that there is at most one such f, and it would satisfy for all i € I, and ¢ € ¥,
£ = fie).

To see that such map f exists is easy if we are able to prove that, for all ¢ € €,

supie/[|fi(e)[| < oo (1)

Let i € I be given. We claim that that || fj(c)|| < ||c|| for any positive ¢ € €. Indeed, we have ¢ < ||| - 1,
and thus fi(c) <||c||- f(1) =||c||- 1, and so || fi(c)|| < ||c||. It follows that || f;(c)|| < 4-||c|| for any ¢ € <&
by writing ¢ = ¢ — ¢ + ic3 — ics Where ¢y, ¢2, ¢3, ca € € are all positive. (We even have || f(c)| < ||c||
for all ¢ € ¢, but this requires a bit more effor(!l) Thus, we have sup;c; || fi(c)]] < 4]|c|| < +oo. Hence
Statement (I)) holds.

Thus @;¢; 7 is the product of the <7 in Cpy;. It is easy to see that @,.; 7 is the product of the .27
in Cyyy as well. Hence Cyyy; has all small products (as does Cpyy) and U: Cyyy — Cpyy preserves
small products.

Let us think about equalisers in Cyy; and Cpy;. Let &7 and Z be C*-algebras and let f,g: &/ — %
be MIU-maps. We must prove that f and g have an equaliser e: & — &7 in Cyyyy, and that e is the
equaliser of f and g in Cp; as well.

Since f and g are MIU-maps (and hence continuous), it is not hard to see that

¢ ={acd: fla) =gla)}

is a C*-subalgebra of .«7. We claim that the inclusion e: & — &7 is the equaliser of f, g in Cgy. Let 7
be a C*-algebra and let d: 2 — o/ be a PU-map such that fod = god. We must show that there is
a unique PU-map h: & — & such that d = eoh. Note that d maps 7 into &. The map h: ¥ — & is
simply the restriction of d: 2 — </ in the codomain. Hence e is the equaliser of f,g in Cgy.

Note that in the argument above 4 is a PU-map since d is a PU-map. If d were a MIU-map, then A
would be a MIU-map too. Hence e is the equaliser of f, g in the category Cy; as well.

Hence Cyp; has all equalisers and U : Cyy; — Cpy; preserves equalisers. Hence Cy,py; has all small
limits and U : Cyy; — Cpyy preserves all small limits.

(Note that while we have seen that Cpy; has all small products, and it was easy to see that Cy;y; has
all equalisers, it is not clear whether Cpy; has all equalisers. Indeed, if f,g: &/ — 9 are PU-maps, then
the set {a € &/ f(a) = g(a)} need not be a C*-subalgebra of <7.)

(Condition [(iii)]). Let <7 be a C*-algebra. We must find a set / and for each i € I a PU-map f;: &/ — &
such that for every PU-map f: o — A there is a (not necessarily unique) i € I and h: o7 — 2 such
that f = ho f;.

Note that if f: &/ — 2 is a PU-map, then the range of the PU-map f need not be a C*-subalgebra
of #. (If the range of PU-maps would have been C*-algebras, then we could have taken / to be the set
of all ideals of <7, and f;: &/ — <7 /J to be the quotient map for any ideal J of <7.)

ISee Corollary 1 of [7].
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Nevertheless, given a PU-map f: &/ — 9 there is a smallest C*-subalgebra, say %', of £ that
contains the range of f. We claim that #%’ < #(.o7"Y) where #2' is the cardinality of %’ and #(.&/") is
the cardinality of &/ Np

If we can find proof for our claim, the rest is easy. Indeed, to begin note that the collection of all C*-
algebras is not a small set. However, given a set U, the collection of all C*-algebras ¥ whose elements
come from U (so ¢ C U) is a small set. Now, let k := #(.o/ N) be the cardinality of .o N (so x is itself a
set) and take

= {(%¢,c): € isaC*-algebra on asubset of k and ¢: &/ — € is a PU-map }.

Since the collection of C*-algebras ¢ with ¥ C « is small, and since the collection of PU-maps from .o/
to ¢ is small for any C*-algebra %, it follows that I is small.

For each i € I with i = (¥, c) define <7 :== ¢ and f; :=c.

Let f: o/ — % be a PU-map. We must find i € I and a MIU-map h: o7 — & such that ho f; = f.
Let ' be the smallest C*-subalgebra that contains the range of f. By our claim we have #%' < #(.&/™) =
k. By renaming the elements of %’ we can find a C*-algebra ¢ isomorphic to %’ whose elements come
from k. Let ¢ : ¢ — %’ be the isomorphism.

Note that ¢ := ¢! o f: &/ — % is a PU-map. So we have i := (¢,c) € I. Further, the inclusion
e: B — B is aMIU-map, as is @. So we have:

o / %
PU
c l PU MIU T e

@ MqI)U B

Now, h:=eo@: ¢ — % is a MIU-map with f = ho f;. Hence Cond. [(ii)| holds.

Let us proof our claim. Let &/ and % be C*-algebras and let f: &/ — % be a PU-map. Let %’ be
the smallest C*-subalgebra that contains the range of f.

We must show that #%' < #(7/™).

Let us first take care of pathological case. Note that if <7 is trivial, i.e. &/ = {0}, then %' = {0}, so
#(o7N) = 1 = #2%'. Now, let us assume that .7 is not trivial. Then we have an injection C — .o/ given
by A — A - 1, and thus #C < #¢7.

The trick to prove #%' < #(.7") is to find a more explicit description of #’. Let T be the set of
terms formed using a unary operation (—)* (involution) and two binary operations, - (multiplication)
and + (addition), starting from the elements of <7. Let f7: T — %’ be the map (recursively) given by,
forae o, and s,t €T,

fr(a) = f(a)
fr(s*) = (fr(s))"
fr(s-t) = fr(s)- fr(t)
fr(s+t) = fr(s) + fr(t).

2 Although it has no bearing on the validity of the proof one might wonder if the simpler statement #%’ < #27 holds as well.
Indeed, if #47 = #C or #4/ = #(ZX ) for some infinite set X, then we have #.47 = #(.o/ N), and so #%' < #c7. However, not
every uncountable set is of the form 2X for some infinite set X, and in fact, if #.7 = X o, then #(.o/ N ) > #47 by Corollary 3.9.6
of [12]]
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Note that the range of f3, let us call it Ranf3, is a *-subalgebra of %’. We will prove that #Ran fp < #.¢7 .
Since fp is a surjection of T onto Ranfp it suffices to prove that #7 < #<7. In fact, we will show
that #7' = #.47.

First note that <7 is infinite, and &/ C T, so T is infinite as well. To prove that #T' = #./ we write
the elements of T as words (with the use of brackets). Indeed, with Q := &7 U {“- 7 “+7,“x” “)” “("}
there is an obvious injection from 7 into the set Q* of words over Q. Since .27 is infinite, and Q\ & is
finite we have #Q = #.<7 by Hilbert’s hotel. Recall that Q* = |J,,_, Q". Since Q is infinite, we also have
#(N x Q) = #Q and even #(Q x Q) = #Q (see Theorem 3.7.7 of [2]), so #Q = #(Q") for all n > 0. It
follows that

#(Q") = #(U2oQ")
= #(1+U,21Q)
= #1+NxQ)
— #0.

Since there is an injection from 7 to Q* we have #o/ < #T < #(Q*) = #Q = #4/ and so #T = #4/.
Hence #Ranfp < #.47.

Since Ranfp is a x-algebra that contains Ranf, the closure Ran fp of Ran fp with respect to the norm
on A’ is a C*-algebra that contains Ranf. As %’ is the smallest C*-subalgebra that contains Ranf, we
see that ' = Ranfp.

Let S be the set of all Cauchy sequences in Ranfp. As every point in %’ is the limit of a Cauchy
sequence in Ranjfp, we get #28’ < #S. Thus:

#B < #S
< #(Ranfp)"  as S C (Ranfp)"
< #(N) as #Ranfp < #47.
Thus we have proven our claim.
Hence Conditions |(1)| hold and U : Cyy; — Cpy has a left adjoint. O

We have seen that U : Cyy — Cpy has a left adjoint F': Cpy — Cyypyy- This adjunction gives a
comonad FU on Cyy;, which in turns gives us two categories: the Eilenberg—Moore category &.# (FU)
of FU-coalgebras and the Kleisli category # ¢(FU). We claim that C}; is isomorphic to JZ¢(FU)
since Cyyyys is a subcategory of Cpy; with the same objects.

This is a special case of a more general phenomenon which we discuss in the next section (in terms
of monads instead of comonads), see Theorem

2 Kleislian Adjunctions

Beck’s Theorem (see [6]], VI.7) gives a criterion for when an adjunction F' U “is” an adjunction between
C and &4 (UF). We give a similar (but easier) criterion for when an adjunction “is” an adjunction
between C and £ ¢(UF). The criterion is not new; e.g., it is mentioned in [5]] (paragraph 8.6) without
proof or reference, and it can be seen as a consequence of Exercise VI.5.2 of [6] (if one realises that an

equivalence which is bijective on objects is an isomorphism). Proofs can be found in the appendix.
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Notation 6. Let F': C — D be a functor with right adjoint U. Denote the unit of the adjunction by
n: idp — UF, and the counit by €: FU — idc.
Recall that UF is a monad with unit n and as multiplication, for C from C,

Uc = Uéepc: UFUFC — UFC.

Let # U(UF) be the Kleisli category of the monad UF. So ¥ ¢(UF) has the same objects as C, and
the morphisms in # L(UF) from C\ to C, are the morphism in C from C to UFC,. Given C from C
the identity in # ((UF) on C is Ne. If C1,C2,Cs, f: C1 — Cy, g: C, — C3 from C are given, g after f
in X L(UF) is
8O f = UgoUFgof.

LetV: C— A L(UF) be given by, for f: C; — C from C,
Vf = ngof: C — UFC,.
Let G: ZL(UF) — C be given by, for f: C; — UFC; from C,
Gf := lic,oUFf: UFC; — UFG,.

The following is Exercise VI.5.1 of [6].

Lemma 7. Let F: C — D be a functor with a right adjoint U.
Then there is a unique functor L: # {(UF) — D (called the comparison functor) such that U oL = G
and LoV = F (see Notation6)).

Definition 8. Let C and D be categories.

(i) Afunctor F: C — Dis called Kleislian when it has a right adjoint U and the functor L: # ¢(UF) —
D from Lemma[7]is an isomorphism.

(i) We say that D is Kleislian over C when there is a Kleislian functor F: C — D.

Theorem 9. Let F: C — D be a functor with a right adjoint U.
The following are equivalent.

(i) F is Kleislian (see Definition[8]).

(ii) F is bijective on objects (i.e. for every object D from D there is a unique object C from C such
that FC = D).

Corollary 10. The embedding UP: (Cyyy)° — (Cpy)? is Kleislian (see Def.[S).

Proof. By Theorem [9] we must show that U°P has a left adjoint and is bijective on objects. Since the
embedding U : Cy;y — Cpy has a left adjoint F : Ch; — Cyypy it follows that FOP: (Cp)P — (Cipy)™®
is the right adjoint of U°P. Thus U has a left adjoint. Further, as Cyy; and Cpy; have the same objects,
U is bijective on objects, and so is U°P. Hence U®? is Kleislian. O
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In summary, the embedding U : Cy;;y — Cfyy has aleft adjoint F (and so FP: (Cypy)®P — (Cpy)®P
is right adjoint to U°P), and the unique functor from the Kleisli category % ¢(FU) of the monad FU
on (Cyyy) to (Cpyy)® that makes the two triangles in the diagram below on the left commute is an
isomorphism.

) o T A Setun
(Cin)® = 7" Set ¢

For the category Set,,,1; of multimaps between sets used in the introduction to describe the semantics of
non-deterministic programs the situation is the same, see the diagram above to the right.

(The functor V is the obvious embedding. The right adjoint G of V sends a multimap f from X to Y
to the function Gf: Z(X) — Z(Y) that assigns to a subset A € Z(X) the image of A under f. Note
that GV = £.)

3 Discussion

3.1 Variations

Example 11 (Subunital maps). Let Cp; be the category of C*-algebras and the positive linear maps f
between them that are subunitial, i.e. f(1) < 1. The morphisms of C}; are called PsU-maps.

It is not hard to see that the products in Cp; are the same as in Cy,y;, and that the equaliser in Cyyy; of
a pair f, g of MIU-maps is the equaliser of f, g in Cpy; as well. Thus the embedding U : Cyyy — Cpgy
preserves limits. Using the same argument as in Theorem [3] but with “PU-map” replaced by “PsU-map”
one can show that U satisfies the Solution Set Condition. Hence U has a left adjoint by Freyd’s Adjoint
Function Theorem, say F': Cp oy — Cypu-

Since Cp; has the same objects as Cyyy; (namely the C*-algebras) the functor UP: (Cyyyy)® —
(Cpey)°P is bijective on objects and thus Kleislian (by Th.[9).

Hence (C}g;)°P is Kleislian over (Cyypy)°P.

Example 12 (Bounded linear maps). Let Cj be the category of positive bounded linear maps between
C*-algebras. We will show that (C})°P is nor Kleislian over (Cyy;)°. Indeed, if it were then (Cj)°P
would be cocomplete, but it is not: there is no @w-fold product of C in Cj. To see this, suppose that
there is a w-fold product & in Cy with projections 7;: & — C for i € @. Since 7; is a bounded linear
map for i € @, it has finite operator norm, say ||7;||. By symmetry, ||7;|| = ||7;|| for all i, j € ®. Write
K = ||m|| = ||m1]| = ||m|| = ---. Define f;: C — C by fi(z) =iz for all z€ C and i € ®. Then f; is
a positive bounded linear map for each i € ®. Since & is the @-fold product of C, there is a (unique
positive) bounded linear map f: C — &2 such that ;0 f = f; for all i € @. For each N € @ we have

N = Il < [l = llave £l < llmvll LA = KA1

Thus K||f|| is greater than any number, which is absurd.

Example 13 (Completely positive maps). For clarity’s sake we recall what it means for a linear map f
between C*-algebras to be completely positive (see [8]]). For this we need some notation. Given a C*-
algebra o7, and n € N let M,,(«7) denote the set of n x n-matrices with entries from .o7. We leave it to the
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reader to check that M, (.<7) is a x-algebra with the obvious operations. In fact, it turns out that M, (<)
is a C*-algebra, but some care must be taken to define the norm on M, (<7) as we will see below. Now,
a linear map f: &/ — 9 is called completely positive when M,,f is positive for each n € N, where
M, f: M,(«/) — M,(Z) is the map obtained by applying f to each entry of a matrix in M,(</). Of
course, “M,, f is positive” only makes sense once we know that M, (.</) and M, (%) are C*-algebras.

Let o/ be a C*-algebra. We will put a C*-norm on M,(<7). Let 2 be a Hilbert space and let
n: of — PB(H), be an isometric MIU-map. We get anorm || — ||z on M, (<7 ) given by for A € M, (<),

1Allz = [IE((Mu7)(A))ll;

where &((M,7)(A)): A" — " is the bounded linear map represented by the matrix (M,7)(A),
and || ((M,)(A))| is the operator norm of &( (M, m)(A)) in B(H").

It is easy to see that || — || satisfies the C*-identity, ||A*Al|; = ||A||% for all A € M,(<7). Tt is less
obvious that M, (/) is complete with respect to || —||z. To see this, first note that ||A;;|| < ||A|x for
all i, j. So given a Cauchy sequence Ay, Ay, ... in M,(</) we can form the entrywise limit A, that is,
Ajj = lim,,_,.,A;j. We leave it to the reader to check that A;; is the limit of Ay, A,, ..., and thus M, (/)
is complete with respect to || — ||z. Hence M, (/) is a C*-algebra with norm || — ||

The C*-norm || — ||z does not depend on 7. Indeed, let % and % be Hilbert spaces and let
m o — B(IA) and my: of — HB() be isometric MIU-maps; we will show that || — ||z, = || — || z,-
Recall that the norm || — ||z, induces an order <z on M, (/) given by 0 <. A iff ||[A — ||A]|z ||z < ||A]lz
where A € M, (). Since ||A||Z = inf{ A € [0,00): A*A <z, A } forall A € M, (), to prove || — ||z, =
|| — ||z, it suffices to show that the orders < and <, coincide. But this is easy when one recalls
that A € M, (/) is positive iff A is of the form B*B for some B € M,(</).

The completely positive linear maps that preserve the unit are called CPU-maps. Let Cipy; be the
category of CPU-maps between C*-algebras. Since M, (f) is a MIU-map when f is a MIU-map and
a MIU-map is positive, we see that any MIU-map is completely positive. Thus Cyyy; is a subcategory
of Cépy. We claim that (Cgpyy)P is Kleislian over (Cyyyy ).

Let us show that U preserves limits. To show that U preserves equalisers, let f,g: &/ — % be MIU-
maps. Then & := {x € &/ f(x) = g(x)} is a C*-subalgebra of &/ and the embedding e: & — <7 is an
isometric MIU-map. Then e is the equalisers of f, g in Cyy;; we will show that e is the equaliser of f,g
in C{py. Let € be a C*-algebra, and let c: ¢ — o/ be a CPU-map such that foc=gocLetd: € — &
be the restriction of c. It turns out we must prove that d is completely positive. Let n € N be given.
We must show that M,d: M, ¢ — M,& is positive. Note that M,e is an injective MIU-map and thus an
isometry. So in order to prove that M, d is positive it suffices to show that M,e o M,,d = M, (eod) = M,c
is positive, which it is since ¢ is completely positive. Thus e is the equaliser of f,g in C¢p;. Hence U
preservers equalisers.

To show that U preserves products, let 7 be a set and for each i € I let o7, be a C*-algebra. We
will show that @,.; .7 is the product of the <7 in C{py. Let € be a C*-algebra, and for each i € 1,
let f;: € — <f; be a CPU-map. As before, let f: € — @,.;A; be the map given by f(x)(i) = fi(x)
for all i € I and x € ¥. Leaving the details to the reader it turns out that it suffices to show that f
is completely positive. Let n € N be given. We must prove that M, f: M,(€) — M,(D,c; ) is
positive. Let @: M,(D;c; &%) — Djc;Mn() be the unique MIU-map such that m; 0 ¢ = M, 7; for
all i € I. Then ¢ is a MIU-isomorphism and thus to prove that M, f is positive, it suffices to show
that @ o M, f is positive. Let i € I be given. We must prove that m; 0 ¢ o M, f is positive. But we have
mio@oM,f =M,m,oM,f =M,(m o f) =M,f;, which is positive since f is completely positive. Thus
@, # is the product of the «7; in C¢py; and hence U preserves limits.
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With the same argument as in Theorem [9] the functor U satisfies the Solution Set Condition and
thus U has a left adjoint. It follows that UP: (Cyyy)®P — (Cépy) P is Kleislian.

Example 14 (W*-algebras). Let Wy, be the category of von Neumann algebras (also called W*-
algebras) and the MIU-maps between them that are normal, i.e., preserve suprema of upwards directed
sets of self-adjoint elements. Let Wy, be the category of von Neumann and normal PU-maps. Note
that W,y 18 a subcategory of W{p;. We will prove that (W{p;)°P is Kleislian over (W) -

It suffices to show that U has a left adjoint. Again we follow the lines of the proof of Theorem [3
Products and equalisers in W,y are the same as in Cyy. It is not hard to see that the embedding
U: Wiy — Wypy preserves limits. To see that U satisfies the Solution Set Condition we use the
same method as before: given a von Neumann algebra <7, find a suitable cardinal k such that the follow-
ing is a solution set.

I := {(%,c): ¥ isavon Neumann algebra on a subset of k

and c: &/ — ¢ is anormal PU-map },

Only this time we take k = #( @(#2(.<7)) ) instead of k = #(./" ). We leave the details to the reader, but
it follows from the fact that given a subset X of a von Neumann algebra 4 the smallest von Neumann
subalgebra %’ that contains X has cardinality at most #((#(X))). Indeed, if .7 is a Hilbert space
such that 8 C B () (perhaps after renaming the elements of %), then %’ is the closure (in the weak
operator topology on () of the smallest *-subalgebra containing X. Thus any element of %’ is the
limit of a filter — a special type of net, see paragraph 12 of [9] — of *-algebra terms over X, of which
there are no more than #( o(2(X))).

By a similar reasoning one sees that the opposite (Wycp,;)°P of the category of normal completely
positive subunital linear maps between von Neumann algebras is Kleislian over (W) The exis-
tence of the adjoint to the inclusion Wy, — Wyepeu 18 key in our construction of a model of Selinger
and Valiron’s quantum lambda calculus by von Neumann algebras, see [[1]].

3.2 Concrete description

In this note we have shown that the embedding U : Cy;y — Cpy has a left adjoint F, but we miss
a concrete description of F.o/ for all but the simplest C*-algebras .«#. What constitutes a “concrete
description” is perhaps a matter of taste or occasion, but let us pose that it should at least enable us to
describe the Eilenberg—Moore category &.# (FU ) of the comonad FU. More concretely, it should settle
the following problem.

Problem 15. Writing BOUS for the category of positive linear maps that preserve the unit between
Banach order unit spaces, determine whether & 4 (FU) = BOUS.

(An order unit space is an ordered vector space V over R with an element 1, the order unit, such that
forall v €V there is A € [0,00) such that —A -1 <v < A -1. The smallest such A is denoted by ||v||.
See [4)] for more details. If v — ||v|| gives a complete norm, V is called a Banach order unit space.)

3.3 MIU versus PU

A second “problem” is to give a physical description (if there is any) of what it means for a quantum
program’s semantics to be a MIU-map (and not just a PU-map). A step in this direction might be to
define for a C*-algebra o/, a PU-map ¢: o — C, and a,b € o/ the quantity

Covg(a,b) := @(a'b) — @(a)" @(b)
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and interpret it as the covariance between the observables @ and b in state ¢ of the quantum system .o7. Let
T: o/ — 9 be a PU-map between C*-algebras (so perhaps T is the semantics of a quantum program).
Then it is not hard to verify that T is a MIU-map if and only if 7" preserves covariance, that is,

Covy(Ta,Th) = Covgyor(a,b) forall a,b € o/.
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A Additional Proofs
Proof of Lemma[/l Define LC := FC for all objects C of #¢(UF) and
Lf = épc,oFf
for f: C; — UFC, from C. We claim this gives a functor L: Z¢(UF) — D.

(L preserves the identity) Let C be an object of # ¢(UF), that is, an object of C. Then the identity
on Cin ZL(UF) is nc. We have L(1¢) = €rc o FN¢ = idpc.
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(L preserves composition) Let f: C; — UFC, and g: C;, — UFC5 from C be given. We must
prove that L(g © f) = LgoLf. We have:

L(g® f) = L(ic;oUFgo f) by def. of g © f
= &rc,0F g, oFUFgoF f by def. of L
= &pc;0FU¢gpc; o FUFgoF f by def. of c,
= gpc;oFgogpc, oF f by nat. of )
= LgoLf by def. of L

Hence L is a functor from JZ¢(UF) to D.
Let us prove that U oL = G. For f: C; — UFC, from C we have

ULf = U(gepc,oFf) by def. of L

= Ugpc,oUFf
= Uc, oUFf by def. of uc,
= Gf by def. of Gf.

Let us prove that LoV = F. For f: C; — C, from C be given, we have

LVf = L(nc,of) by def. of V
= &rc,0FNe,oF f by def. of L
=Ff by counit—unit eq.

We have proven that there is a functor L: #¢(UF) — D such that UoL =G and LoV = F. We
must still prove that it is as such unique.

Let L': #¢(UF) — D be a functor such that U o L' = G and L' oV = F. We must show that L = L.
Let us first prove that L’ and L agree on objects. Let C be an object of # ¢(UF), i.e., C is an object of C.
Since L'oV =F and VC =C we have L'C =L'VC = FC = LC. Now, let f: C; — UFC, from C be given
(so f is a morphism in Z¢(UF) from C; to C;). We must show that L' f = LU = &g¢, o F f. Note that
since F is the left adjoint of U there is a unique morphism f: FC; — FC, in D such that U f on¢, = f.
To prove that L' f = Lf, we show that both Lf and L’ f have this property. We have

UL fone, = Gfong, as U oL’ = G by assump.
= U, oUF fong, by def. of G
= Uc, °oNurc, o f by nat. of n
=f as UF is a monad.

By a similar argument we get ULf on¢, = f. Hence Lf = L'f. O

Proof of Theorem[d We use the symbols from Notation [6l

Suppose that L is an isomorphism. We must prove that F' is bijective on objects. Note
that F = LoV, so it suffices to show that both L and V are bijective on objects. Clearly, L is bijective
on objects as L is an isomorphism, and V: C — #¢(UF) is bijective on objects since the objects
of #¢(UF) are those of C and VC = C for all C from C.
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Suppose that [(iD)| holds. We prove that L is an isomorphism by giving its inverse. Let D
be an object from D. Note that since F is bijective on objects there is a unique object C from C such
that FD = C. Define KC := D.

Let g: D; — D, from D be given. Note that by definition of K we have:

NKD, Ug

KD, UFKD, =—=UD;

UD, —=UFKD,

Now, define Kg: KD; — UFKD, inD by Kg := Ugongp,.
We claim that this gives a functor K: D — J#¢(UF).
(K preserves the identity) For an object D of D we have

Kidp = Uidpongp = Nkp,

and Mkp is the identity on KD in £ ¢(UF).
(K preserves composition) Let f: D; — D, and g: D, — D3 from D be given. We must prove
that K(go f) = K(g) ® K(f). We have

K(g) ©K(f) = ukp,oUFKgoKf by def. of ®
= Ukp; O UFUgoUFNgp, oU foNkp, by def. of K
= Uegp,oUFUgoUFnkp,oU fonkp, by def. of 1

= UgoUegp,oUFNkp,oU fongp, by nat. of €
= UgoU fonkp, by counit—unit eq.
= K(gof) by def of K.

Hence K is a functor from D to # ¢(UF). We will show that K is the inverse of L. For this we must
prove that KoL =idp and Lo K = id ¢y ).
For a morphism g: D; — D; from D, we have

LKg = L(Ugonkp,) by def. of K
= €rkp, oFUgo FNkp, by def. of L
= go&rkp, ©FNkp, by nat. of €
=8 by counit—unit eq.

For a morphism f: C; — UFC;, in C we have

KLf = K(&pc,oFf) by def. of L
KLfdd = Uégpc,oUF fonkrc, by def. of K
= Ugrc, oNurc, o f by nat. of N

=f by counit-unit eq.

Hence K is the inverse of L, so L is an isomorphism. U
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