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Furber and Jacobs have shown in their study of quantum computation that the category of commu-

tative C∗-algebras and PU-maps (positive linear maps which preserve the unit) is isomorphic to the

Kleisli category of a comonad on the category of commutative C∗-algebras with MIU-maps (linear

maps which preserve multiplication, involution and unit). [3]

In this paper, we prove a non-commutative variant of this result: the category of C∗-algebras and

PU-maps is isomorphic to the Kleisli category of a comonad on the subcategory of MIU-maps.

A variation on this result has been used to construct a model of Selinger and Valiron’s quantum

lambda calculus using von Neumann algebras. [1]

The semantics of a non-deterministic program that takes two bits and returns three bits can be

described as a multimap (= binary relation) from {0,1}2 to {0,1}3. Similarly, a program that takes

two qubits and returns three qubits can be modelled as a positive linear unit-preserving map from

M2 ⊗ M2 ⊗ M2 to M2 ⊗ M2, where M2 is the C∗-algebra of 2×2-matrices over C.

More generally, the category Setmulti of multimaps between sets models non-deterministic programs

(running on an ordinary computer), while the opposite of the category C∗
PU of PU-maps (positive linear

unit-preserving maps) between C∗-algebras models programs running on a quantum computer. (When

we write “C∗-algebra” we always mean “C∗-algebra with unit”.)

A multimap from {0,1}2 to {0,1}3 is simply a map from {0,1}2 to P({0,1}3). In the same

line Setmulti is (isomorphic to) the Kleisli category of the powerset monad P on Set. What about C∗
PU?

We will show that there is a monad Ω on (C∗
MIU)

op, the opposite of the category C∗
MIU of C∗-algebras

and MIU-maps (linear maps that preserve the multiplication, involution and unit), such that (C∗
PU)

op is

isomorphic to the Kleisli category of Ω. We say that (C∗
PU)

op is Kleislian over (C∗
MIU)

op. So in the same

way we add non-determinism to Set by the powerset monad P yielding Setmulti, we can obtain (C∗
PU)

op

from (C∗
MIU)

op by a monad Ω.

Let us spend some words on how we obtain this monad Ω. Note that since every positive element

of a C∗-algebra A is of the form a∗a for some a ∈ A any MIU-map will be positive. Thus C∗
MIU is a

subcategory of C∗
PU. Let U : C∗

MIU −→ C∗
PU be the embedding.

In Section 1 we will prove that U has a left adjoint F : C∗
PU −→C∗

MIU, see Theorem 5. This adjunction

gives us a comonad Ω := FU on C∗
MIU (which is a monad on (C∗

MIU)
op) with the same counit as the

adjunction. The comultiplication δ is given by δA = FηUA for every object A from C∗
MIU where η is

the unit of the adjunction between F and U .

In Section 2 we will prove that (C∗
PU)

op is isomorphic to K ℓ(FU) if FU is considered a monad

on (C∗
MIU)

op. In fact, we will prove that the comparison functor L : K ℓ(FU)−→ (C∗
PU)

op (which sends

a MIU-map f : FUA −→ B to U f ◦ηUA : UA −→UB) is an isomorphism, see Corollary 10.

The method used to show that (C∗
PU)

op is Kleislian over (C∗
MIU)

op is quite general and it will be

obvious that many variations on (C∗
PU)

op will be Kleislian over (C∗
MIU)

op as well, such as the opposite

of the category of subunital completely positive linear maps between C∗-algebras. The flip-side of this

generality is that we discover preciously little about the monad Ω which leaves room for future inquiry

(see Section 3).
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We will also see that the opposite (W∗
NCPsU)

op of the category of normal completely positive subunital

maps between von Neumann algebras is Kleislian over the subcategory (W∗
NMIU)

op of normal unital ∗-

homomorphisms. This fact is used in [1] to construct an adequate model of Selinger and Valiron’s

quantum lambda calculus using von Neumann algebras.

1 The Left Adjoint

In Theorem 5 we will show that U has a left adjoint, F : C∗
MIU → C∗

PU, using a quite general method. As

a result we do not get any “concrete” information about F in the sense that while we will learn that for

every C∗-algebra A there exists an arrow ρ : A → UFA which is initial from A to U we will learn

nothing more about ρ than this. Nevertheless, for some (very) basic C∗-algebras A we can describe FA

directly, as is shown below in Example 1–3.

Example 1. Let us start easy: C will be mapped to itself by F , that is:

the identity ρ : C−→UC is an initial arrow from C to U(−).
Indeed, let A be a C∗-algebra and let σ : C→UA be a PU-map. Then σ must be given by σ(λ ) = λ ·1
for λ ∈C, where 1 is the identity of A . Thus σ is a MIU-map as well. Hence there is a unique MIU-map

σ̂ : C→ A (namely σ̂ = σ ) such that σ̂ ◦ρ = σ . (C is initial in both C∗
MIU and C∗

PU.)

Example 2. The image of C2 under F will be the C∗-algebra C[0,1] of continuous functions from [0,1]
to C. As will become clear below, this is very much related to the familiar functional calculus for C∗-

algebras: given an element a of a C∗-algebra A with 0 ≤ a ≤ 1 and f ∈ C[0,1] we can make sense

of “ f (a)”, as an element of A .

The map ρ : C2 −→UC[0,1] given by, for λ ,µ ∈ C, x ∈ [0,1],

ρ(λ ,µ)(x) = λx + µ(1− x)

is an initial arrow from C
2 to U.

Let σ : C2 → UA be a PU-map. We must show that there is a unique MIU-map σ : C[0,1] → A such

that σ = σ ◦ρ .

Writing a := σ(1,0), we have σ(λ ,µ) = λa+µ(1−a) for all λ ,µ ∈C. Note that (0,0) ≤ (1,0) ≤
(1,1) and thus 0 ≤ a ≤ 1. Let C∗(a) be the C∗-subalgebra of A generated by a. Then C∗(a) is commuta-

tive since a is positive (and thus normal). Given a MIU-map ω : C∗(a)→ C we have ω(a) ∈ [0,1] since

0 ≤ a ≤ 1. Thus ω 7→ ω(a) gives a map j : ΣC∗(a)→ [0,1], where ΣC∗(a) is the spectrum of C∗(a), that

is, ΣC∗(a) is the set of MIU-maps from C∗(a) to C with the topology of pointwise convergence. (By

the way, the image of j is the spectrum of the element a.) The map j is continuous since the topology

on ΣC∗(a) is induced by the product topology on C
C∗(a). Thus the assignment h 7→ h◦ j gives a MIU-map

C j : C[0,1]→CΣC∗(a). By Gelfand’s representation theorem there is a MIU-isomorphism

γ : C∗(a)−→CΣC∗(a)

given by γ(b)(ω) = ω(b) for all b ∈C∗(a) and ω ∈ ΣC∗(a). Now, define

σ := γ−1 ◦C j : C[0,1] −→ C
∗(a) →֒ A .

(In the language of the functional calculus, σ maps f to f (a).) We claim that σ ◦ρ = σ . It suffices to
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show that C j ◦ρ ≡ γ ◦σ ◦ρ = γ ◦σ . Let λ ,µ ∈ C and ω ∈ ΣC∗(a) be given. We have

(C j ◦ρ)(λ ,µ)(ω) = (C j)(ρ(λ ,µ))(ω)

= ρ(λ ,µ)( j(ω)) by def. of C j

= λ j(ω) + µ(1− j(ω)) by def. of ρ

= λω(a) + µ(1−ω(a)) by def. of j

= ω(λa+µ(1−a)) as ω is a MIU-map

= ω(σ(λ ,µ)) by choice of a

= γ(σ(λ ,µ))(ω). by def. of γ

= (γ ◦σ)(λ ,µ)(ω).

It remains to be shown that σ is the only MIU-map τ : C[0,1]→ A such that Uτ ◦ρ = σ . Let τ be such

a map; we prove that τ = σ . By assumption τ and σ agree on the elements f ∈C[0,1] of the form

f (x) = λx + µ(1− x).

In particular, σ and τ agree on the map h : [0,1]→ C given by h(x) = x.

Now, since σ and τ are MIU-maps and h generates the C∗-algebra C[0,1] (this is Weierstrass’s

theorem), it follows that σ = τ .

Example 3. The image of C3 under F will not be commutative, or more formally:

If ρ : C3 −→UB is an initial map from C
3 to U, then B is not commutative.

Suppose that B is commutative towards contradiction. Let A be a C∗-algebra in which there are positive

a1, a2, a3 such that a1a2 6= a2a1 and a1 +a2 +a3 = 1.

(For example, we can take A to be the set of linear operators on C
2 and let

a1 := 1/2 P1 a2 := 1/2 P+ a3 := I − 1/2P1 − 1/2 P+

where P1 denotes the orthogonal projection onto {(0,x) : x ∈ C} and P+ is the orthogonal projection

onto {(x,x) : x ∈ C}.)

Define f : C3 → A by, for all λ1,λ2,λ3 ∈C,

f (λ1,λ2,λ3) = λ1a1 + λ2a2 + λ3a3.

Then it is not hard to see that f a PU-map. So as B is the initial arrow from C
3 to U there is a (unique)

MIU-map f : B → A such that f ◦ρ = f . We have

a1 ·a2 = f (1,0,0) · f (0,1,0)

= f (ρ(1,0,0)) · f (ρ(0,1,0))

= f (ρ(1,0,0) · ρ(0,1,0))

= f (ρ(0,1,0) · ρ(1,0,0)) because B is commutative

= f (ρ(0,1,0)) · f (ρ(1,0,0))

= a2 ·a1.

This contradicts a1 ·a2 6= a2 ·a1. Hence B is not commutative.
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Remark 4. Before we prove that the embedding C∗
MIU → C∗

PU has a left adjoint F (see Theorem 5) let

us compare what we already know about F with the commutative case. Let CC∗
MIU denote the category

of MIU-maps between commutative C∗-algebras and let CC∗
PU denote the category of PU-maps between

commutative C∗-algebras. From the work in [3] it follows that the embedding CC∗
MIU −→CC∗

PU has a left

adjoint F ′ and moreover that F ′A =CStatA , where StatA is the topological space of PU-maps from A

to C with pointwise convergence and CStatA is the C∗-algebra of continuous functions from StatA to C.

Let x ∈ [0,1]. Then the assignment (λ ,µ) 7→ xλ +(1− x)µ gives a PU-map x : C2 → C. It is not

hard to see that x 7→ x gives an isomorphism from [0,1] to StatC2. Thus F ′
C

2 ∼=C[0,1]. Hence on C
2 the

functor F and its commutative variant F ′ agree (see Example 2). However, on C
3 the functors F and F ′

differ. Indeed, F ′
C

3 is commutative while FC
3 is not (see Example 3).

CC∗
MIU

��

55

⊢ CC∗
PU

��

F ′

uu

C∗
MIU 66⊢ C∗

PU

F
uu

Roughly summarised: while in the diagram above the right adjoints commute with the vertical embed-

dings, the left adjoints do not.

Theorem 5. The embedding U : C∗
MIU −→ C∗

PU has a left adjoint.

Proof. By Freyd’s Adjoint Functor Theorem (see Theorem V.6.1 of [6]) and the fact that all limits can

be formed using only products and equalisers (see Theorem V.2.1 and Exercise V.4.2 of [6]) it suffices to

prove the following.

(i) The category C∗
MIU has all small products and equalisers.

(ii) The functor U : C∗
MIU −→ C∗

PU preserves small products and equalisers.

(iii) Solution Set Condition. For every C∗-algebra A there is a set I and for each i ∈ I a PU-map

fi : A → Ai such that for any PU-map f : A → B there is an i ∈ I and a MIU-map h : Ai → B

such that h◦ fi = f .

Conditions (i) and (ii) can be verified with routine so we will spend only a few words on them (and leave

the details to the reader). To see that Condition (iii) holds requires a little more ingenuity and so we will

give the proof in detail.

(Conditions (i) and (ii)) Let us first think about small products in C∗
MIU and C∗

PU.

Let I be a set, and for each i ∈ I let Ai be a C∗-algebra.

It is not hard to see that cartesian product ∏i∈I Ai is a ∗-algebra when endowed with coordinate-wise

operations (and it is in fact the product of the Ai in the category of ∗-algebras with MIU-maps, and with

PU-maps).

However, ∏i∈I Ai cannot be the product of the Ai as C∗-algebras: there is not even a C∗-norm on

∏i∈I Ai unless Ai is trivial for all but finitely many i ∈ I. Indeed, if ‖−‖ were a C∗-norm on ∏i∈I Ai,

then we must have ‖σ(i)‖ ≤ ‖σ‖ for all σ ∈ ∏i∈I Ai and i ∈ I, and so for any sequence i0, i1, . . . of

distinct elements of I for which Ai0 , Ai1 , . . . are non-trivial, and for every σ ∈ ∏i∈I Ai with σ(in) = n ·1
for all n, we have n = ‖σ(in)‖ ≤ ‖σ‖ for all n, so ‖σ‖= ∞, which is not allowed.

Nevertheless, the ∗-subalgebra of ∏i∈I Ai given by

⊕
i∈I Ai := { σ ∈ ∏i∈I Ai : supi∈I ‖σ(i)‖ < +∞ }
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is a C∗-algebra with norm given by, for σ ∈
⊕

i∈I Ai,

‖σ‖ = supi∈I ‖σ(i)‖.

We claim that
⊕

i∈I Ai is the product of the Ai in C∗
PU (and in C∗

MIU).

Let C be a C∗-algebra, and for each i ∈ I, let fi : C → Ai be a PU-map. We must show that there

is a unique PU-map f : C →
⊕

i∈I Ai such that πi ◦ f = fi for all i ∈ I where πi :
⊕

j∈I A j → Ai is the

i-th projection. It is clear that there is at most one such f , and it would satisfy for all i ∈ I, and c ∈ C ,

f (c)(i) = fi(c).
To see that such map f exists is easy if we are able to prove that, for all c ∈ C ,

supi∈I‖ fi(c)‖ < +∞. (1)

Let i ∈ I be given. We claim that that ‖ fi(c)‖ ≤ ‖c‖ for any positive c ∈ C . Indeed, we have c ≤ ‖c‖ ·1,

and thus fi(c)≤ ‖c‖· f (1) = ‖c‖·1, and so ‖ fi(c)‖ ≤ ‖c‖. It follows that ‖ fi(c)‖ ≤ 4 · ‖c‖ for any c ∈A

by writing c = c1 − c2 + ic3 − ic4 where c1, c2, c3, c4 ∈ C are all positive. (We even have ‖ f (c)‖ ≤ ‖c‖
for all c ∈ C , but this requires a bit more effort1) Thus, we have supi∈I ‖ fi(c)‖ ≤ 4‖c‖ < +∞. Hence

Statement (1) holds.

Thus
⊕

i∈I Ai is the product of the Ai in C∗
PU. It is easy to see that

⊕
i∈I Ai is the product of the Ai

in C∗
MIU as well. Hence C∗

MIU has all small products (as does C∗
PU) and U : C∗

MIU −→ C∗
PU preserves

small products.

Let us think about equalisers in C∗
MIU and C∗

PU. Let A and B be C∗-algebras and let f ,g : A → B

be MIU-maps. We must prove that f and g have an equaliser e : E → A in C∗
MIU, and that e is the

equaliser of f and g in C∗
PU as well.

Since f and g are MIU-maps (and hence continuous), it is not hard to see that

E := { a ∈ A : f (a) = g(a) }

is a C∗-subalgebra of A . We claim that the inclusion e : E → A is the equaliser of f ,g in C∗
PU. Let D

be a C∗-algebra and let d : D → A be a PU-map such that f ◦ d = g ◦ d. We must show that there is

a unique PU-map h : D → E such that d = e ◦h. Note that d maps A into E . The map h : D → E is

simply the restriction of d : D → A in the codomain. Hence e is the equaliser of f ,g in C∗
PU.

Note that in the argument above h is a PU-map since d is a PU-map. If d were a MIU-map, then h

would be a MIU-map too. Hence e is the equaliser of f ,g in the category C∗
MIU as well.

Hence C∗
MIU has all equalisers and U : C∗

MIU −→ C∗
PU preserves equalisers. Hence C∗

MIU has all small

limits and U : C∗
MIU −→ C∗

PU preserves all small limits.

(Note that while we have seen that C∗
PU has all small products, and it was easy to see that C∗

MIU has

all equalisers, it is not clear whether C∗
PU has all equalisers. Indeed, if f ,g : A → B are PU-maps, then

the set {a ∈ A : f (a) = g(a)} need not be a C∗-subalgebra of A .)

(Condition (iii)). Let A be a C∗-algebra. We must find a set I and for each i ∈ I a PU-map fi : A → Ai

such that for every PU-map f : A → B there is a (not necessarily unique) i ∈ I and h : Ai → B such

that f = h◦ fi.

Note that if f : A → B is a PU-map, then the range of the PU-map f need not be a C∗-subalgebra

of B. (If the range of PU-maps would have been C∗-algebras, then we could have taken I to be the set

of all ideals of A , and fJ : A → A /J to be the quotient map for any ideal J of A .)

1See Corollary 1 of [7].
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Nevertheless, given a PU-map f : A → B there is a smallest C∗-subalgebra, say B′, of B that

contains the range of f . We claim that #B′ ≤ #(A N) where #B′ is the cardinality of B′ and #(A N) is

the cardinality of A N.2

If we can find proof for our claim, the rest is easy. Indeed, to begin note that the collection of all C∗-

algebras is not a small set. However, given a set U , the collection of all C∗-algebras C whose elements

come from U (so C ⊆U ) is a small set. Now, let κ := #(A N) be the cardinality of A N (so κ is itself a

set) and take

I := { (C ,c) : C is a C∗-algebra on a subset of κ and c : A → C is a PU-map }.

Since the collection of C∗-algebras C with C ⊆ κ is small, and since the collection of PU-maps from A

to C is small for any C∗-algebra C , it follows that I is small.

For each i ∈ I with i ≡ (C ,c) define Ai := C and fi := c.

Let f : A → B be a PU-map. We must find i ∈ I and a MIU-map h : Ai → B such that h◦ fi = f .

Let B′ be the smallest C∗-subalgebra that contains the range of f . By our claim we have #B′ ≤ #(A N)≡
κ . By renaming the elements of B′ we can find a C∗-algebra C isomorphic to B′ whose elements come

from κ . Let ϕ : C → B′ be the isomorphism.

Note that c := ϕ−1 ◦ f : A → C is a PU-map. So we have i := (C ,c) ∈ I. Further, the inclusion

e : B′ → B is a MIU-map, as is ϕ . So we have:

A
f

PU
//

c PU
��

B

C
ϕ

MIU // B′

eMIU

OO

Now, h := e◦ϕ : C → B is a MIU-map with f = h◦ fi. Hence Cond. (iii) holds.

Let us proof our claim. Let A and B be C∗-algebras and let f : A → B be a PU-map. Let B′ be

the smallest C∗-subalgebra that contains the range of f .

We must show that #B′ ≤ #(A N).

Let us first take care of pathological case. Note that if A is trivial, i.e. A = {0}, then B′ = {0}, so

#(A N) = 1 = #B′. Now, let us assume that A is not trivial. Then we have an injection C→ A given

by λ 7→ λ ·1, and thus #C≤ #A .

The trick to prove #B′ ≤ #(A N) is to find a more explicit description of B′. Let T be the set of

terms formed using a unary operation (−)∗ (involution) and two binary operations, · (multiplication)

and + (addition), starting from the elements of A . Let fT : T −→ B′ be the map (recursively) given by,

for a ∈ A , and s, t ∈ T ,

fT (a) = f (a)

fT (s
∗) = ( fT (s))

∗

fT (s · t) = fT (s) · fT (t)

fT (s+ t) = fT (s) + fT (t).

2Although it has no bearing on the validity of the proof one might wonder if the simpler statement #B′ ≤ #A holds as well.

Indeed, if #A = #C or #A = #(2X ) for some infinite set X , then we have #A = #(A N), and so #B′ ≤ #A . However, not

every uncountable set is of the form 2X for some infinite set X , and in fact, if #A = ℵω , then #(A N)> #A by Corollary 3.9.6

of [2]
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Note that the range of fB, let us call it Ran fB, is a ∗-subalgebra of B′. We will prove that #Ran fB ≤ #A .

Since fB is a surjection of T onto Ran fB it suffices to prove that #T ≤ #A . In fact, we will show

that #T = #A .

First note that A is infinite, and A ⊆ T , so T is infinite as well. To prove that #T = #A we write

the elements of T as words (with the use of brackets). Indeed, with Q := A ∪{“ · ”,“+ ”,“ ∗ ”,“)”,“(”}
there is an obvious injection from T into the set Q∗ of words over Q. Since A is infinite, and Q\A is

finite we have #Q = #A by Hilbert’s hotel. Recall that Q∗ =
⋃∞

n=0 Qn. Since Q is infinite, we also have

#(N×Q) = #Q and even #(Q×Q) = #Q (see Theorem 3.7.7 of [2]), so #Q = #(Qn) for all n > 0. It

follows that

#(Q∗) = #(
⋃∞

n=0Qn )

= #(1+
⋃∞

n=1Q)

= #(1+N×Q)

= #Q.

Since there is an injection from T to Q∗ we have #A ≤ #T ≤ #(Q∗) = #Q = #A and so #T = #A .

Hence #Ran fB ≤ #A .

Since Ran fB is a ∗-algebra that contains Ran f , the closure Ran fB of Ran fB with respect to the norm

on B′ is a C∗-algebra that contains Ran f . As B′ is the smallest C∗-subalgebra that contains Ran f , we

see that B′ = Ran fB.

Let S be the set of all Cauchy sequences in Ran fB. As every point in B′ is the limit of a Cauchy

sequence in Ran fB, we get #B′ ≤ #S. Thus:

#B
′ ≤ #S

≤ #(Ran fB)
N as S ⊆ (Ran fB)

N

≤ #(A N ) as #Ran fB ≤ #A .

Thus we have proven our claim.

Hence Conditions (i)–(iii) hold and U : C∗
MIU −→ C∗

PU has a left adjoint.

We have seen that U : C∗
MIU −→ C∗

PU has a left adjoint F : C∗
PU −→ C∗

MIU. This adjunction gives a

comonad FU on C∗
MIU, which in turns gives us two categories: the Eilenberg–Moore category E M (FU)

of FU -coalgebras and the Kleisli category K ℓ(FU). We claim that C∗
PU is isomorphic to K ℓ(FU)

since C∗
MIU is a subcategory of C∗

PU with the same objects.

This is a special case of a more general phenomenon which we discuss in the next section (in terms

of monads instead of comonads), see Theorem 9.

2 Kleislian Adjunctions

Beck’s Theorem (see [6], VI.7) gives a criterion for when an adjunction F ⊣U “is” an adjunction between

C and E M (UF). We give a similar (but easier) criterion for when an adjunction “is” an adjunction

between C and K ℓ(UF). The criterion is not new; e.g., it is mentioned in [5] (paragraph 8.6) without

proof or reference, and it can be seen as a consequence of Exercise VI.5.2 of [6] (if one realises that an

equivalence which is bijective on objects is an isomorphism). Proofs can be found in the appendix.



8 Quantum Programs as Kleisli Maps

Notation 6. Let F : C −→ D be a functor with right adjoint U. Denote the unit of the adjunction by

η : idD →UF, and the counit by ε : FU → idC.

Recall that UF is a monad with unit η and as multiplication, for C from C,

µC := UεFC : UFUFC −→UFC.

Let K ℓ(UF) be the Kleisli category of the monad UF. So K ℓ(UF) has the same objects as C, and

the morphisms in K ℓ(UF) from C1 to C2 are the morphism in C from C1 to UFC2. Given C from C

the identity in K ℓ(UF) on C is ηC. If C1,C2,C3, f : C1 → C2, g : C2 → C3 from C are given, g after f

in K ℓ(UF) is

g � f := µC3
◦UFg◦ f .

Let V : C −→ K ℓ(UF) be given by, for f : C1 −→C2 from C,

V f := ηC2
◦ f : C1 −→UFC2.

Let G : K ℓ(UF)−→ C be given by, for f : C1 −→UFC2 from C,

G f := µC2
◦UF f : UFC1 −→UFC2.

The following is Exercise VI.5.1 of [6].

Lemma 7. Let F : C −→ D be a functor with a right adjoint U.

Then there is a unique functor L : K ℓ(UF)−→ D (called the comparison functor) such that U ◦L = G

and L◦V = F (see Notation 6).

K ℓ(UF)
G

��

L

))

⊢
D

UssC
V

XX
⊢

F
33

Definition 8. Let C and D be categories.

(i) A functor F : C−→D is called Kleislian when it has a right adjoint U and the functor L : K ℓ(UF)−→
D from Lemma 7 is an isomorphism.

(ii) We say that D is Kleislian over C when there is a Kleislian functor F : C −→ D.

Theorem 9. Let F : C −→ D be a functor with a right adjoint U.

The following are equivalent.

(i) F is Kleislian (see Definition 8).

(ii) F is bijective on objects (i.e. for every object D from D there is a unique object C from C such

that FC = D).

Corollary 10. The embedding Uop : (C∗
MIU)

op −→ (C∗
PU)

op is Kleislian (see Def. 8).

Proof. By Theorem 9 we must show that Uop has a left adjoint and is bijective on objects. Since the

embedding U : C∗
MIU → C∗

PU has a left adjoint F : C∗
PU → C∗

MIU it follows that Fop : (C∗
PU)

op → (C∗
MIU)

op

is the right adjoint of Uop. Thus Uop has a left adjoint. Further, as C∗
MIU and C∗

PU have the same objects,

U is bijective on objects, and so is Uop. Hence Uop is Kleislian.
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In summary, the embedding U : C∗
MIU −→C∗

PU has a left adjoint F (and so Fop : (C∗
MIU)

op → (C∗
PU)

op

is right adjoint to Uop), and the unique functor from the Kleisli category K ℓ(FU) of the monad FU

on (C∗
MIU)

op to (C∗
PU)

op that makes the two triangles in the diagram below on the left commute is an

isomorphism.

K ℓ(FU)

��

∼=
++

⊢
(C∗

PU)
op

Foptt

K ℓ(P)

��

∼=
++

⊢
Setmulti

Gss(C∗
MIU)

op

[[
⊢

Uop 33

Set

XX
⊢

V
55

For the category Setmulti of multimaps between sets used in the introduction to describe the semantics of

non-deterministic programs the situation is the same, see the diagram above to the right.

(The functor V is the obvious embedding. The right adjoint G of V sends a multimap f from X to Y

to the function G f : P(X) → P(Y ) that assigns to a subset A ∈ P(X) the image of A under f . Note

that GV = P .)

3 Discussion

3.1 Variations

Example 11 (Subunital maps). Let C∗
PsU be the category of C∗-algebras and the positive linear maps f

between them that are subunitial, i.e. f (1) ≤ 1. The morphisms of C∗
PsU are called PsU-maps.

It is not hard to see that the products in C∗
PsU are the same as in C∗

MIU, and that the equaliser in C∗
MIU of

a pair f ,g of MIU-maps is the equaliser of f ,g in C∗
PsU as well. Thus the embedding U : C∗

MIU −→ C∗
PsU

preserves limits. Using the same argument as in Theorem 5 but with “PU-map” replaced by “PsU-map”

one can show that U satisfies the Solution Set Condition. Hence U has a left adjoint by Freyd’s Adjoint

Function Theorem, say F : C∗
PsU −→ C∗

MIU.

Since C∗
PsU has the same objects as C∗

MIU (namely the C∗-algebras) the functor Uop : (C∗
MIU)

op −→
(C∗

PsU)
op is bijective on objects and thus Kleislian (by Th. 9).

Hence (C∗
PsU)

op is Kleislian over (C∗
MIU)

op.

Example 12 (Bounded linear maps). Let C∗
P be the category of positive bounded linear maps between

C∗-algebras. We will show that (C∗
P)

op is not Kleislian over (C∗
MIU)

op. Indeed, if it were then (C∗
P)

op

would be cocomplete, but it is not: there is no ω-fold product of C in C∗
P. To see this, suppose that

there is a ω-fold product P in C∗
P with projections πi : P → C for i ∈ ω . Since πi is a bounded linear

map for i ∈ ω , it has finite operator norm, say ‖πi‖. By symmetry, ‖πi‖ = ‖π j‖ for all i, j ∈ ω . Write

K := ‖π0‖ = ‖π1‖ = ‖π2‖ = · · · . Define fi : C → C by fi(z) = iz for all z ∈ C and i ∈ ω . Then fi is

a positive bounded linear map for each i ∈ ω . Since P is the ω-fold product of C, there is a (unique

positive) bounded linear map f : C→ P such that πi ◦ f = fi for all i ∈ ω . For each N ∈ ω we have

N = ‖ fN(1)‖ ≤ ‖ fN‖ = ‖πN ◦ f‖ ≤ ‖πN‖‖ f‖ = K ‖ f‖.

Thus K‖ f‖ is greater than any number, which is absurd.

Example 13 (Completely positive maps). For clarity’s sake we recall what it means for a linear map f

between C∗-algebras to be completely positive (see [8]). For this we need some notation. Given a C∗-

algebra A , and n ∈N let Mn(A ) denote the set of n×n-matrices with entries from A . We leave it to the
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reader to check that Mn(A ) is a ∗-algebra with the obvious operations. In fact, it turns out that Mn(A )
is a C∗-algebra, but some care must be taken to define the norm on Mn(A ) as we will see below. Now,

a linear map f : A −→ B is called completely positive when Mn f is positive for each n ∈ N, where

Mn f : Mn(A ) −→ Mn(B) is the map obtained by applying f to each entry of a matrix in Mn(A ). Of

course, “Mn f is positive” only makes sense once we know that Mn(A ) and Mn(B) are C∗-algebras.

Let A be a C∗-algebra. We will put a C∗-norm on Mn(A ). Let H be a Hilbert space and let

π : A −→B(H ), be an isometric MIU-map. We get a norm ‖−‖π on Mn(A ) given by for A ∈Mn(A ),

‖A‖π = ‖ξ ((Mnπ)(A))‖,

where ξ ((Mnπ)(A)) : H ⊕n → H ⊕n is the bounded linear map represented by the matrix (Mnπ)(A),
and ‖ξ ((Mnπ)(A))‖ is the operator norm of ξ ((Mnπ)(A)) in B(H ⊕n).

It is easy to see that ‖−‖π satisfies the C∗-identity, ‖A∗A‖π = ‖A‖2
π for all A ∈ Mn(A ). It is less

obvious that Mn(A ) is complete with respect to ‖−‖π . To see this, first note that ‖Ai j‖ ≤ ‖A‖π for

all i, j. So given a Cauchy sequence A1, A2, . . . in Mn(A ) we can form the entrywise limit A, that is,

Ai j = limm→∞ Ai j. We leave it to the reader to check that Ai j is the limit of A1, A2, . . . , and thus Mn(A )
is complete with respect to ‖−‖π . Hence Mn(A ) is a C∗-algebra with norm ‖−‖π .

The C∗-norm ‖ − ‖π does not depend on π . Indeed, let H1 and H2 be Hilbert spaces and let

π1 : A −→B(H1) and π2 : A −→B(H2) be isometric MIU-maps; we will show that ‖−‖π1
= ‖−‖π2

.

Recall that the norm ‖−‖πi
induces an order ≤πi

on Mn(A ) given by 0 ≤πi
A iff ‖A−‖A‖πi

‖πi
≤ ‖A‖πi

where A ∈ Mn(A ). Since ‖A‖2
πi
= inf{ λ ∈ [0,∞) : A∗A ≤πi

λ } for all A ∈ Mn(A ), to prove ‖−‖π1
=

‖ − ‖π2
it suffices to show that the orders ≤π1

and ≤π2
coincide. But this is easy when one recalls

that A ∈ Mn(A ) is positive iff A is of the form B∗B for some B ∈ Mn(A ).

The completely positive linear maps that preserve the unit are called CPU-maps. Let C∗
CPU be the

category of CPU-maps between C∗-algebras. Since Mn( f ) is a MIU-map when f is a MIU-map and

a MIU-map is positive, we see that any MIU-map is completely positive. Thus C∗
MIU is a subcategory

of C∗
CPU. We claim that (C∗

CPU)
op is Kleislian over (C∗

MIU)
op.

Let us show that U preserves limits. To show that U preserves equalisers, let f ,g : A −→B be MIU-

maps. Then E := {x ∈ A : f (x) = g(x)} is a C∗-subalgebra of A and the embedding e : E → A is an

isometric MIU-map. Then e is the equalisers of f ,g in C∗
MIU; we will show that e is the equaliser of f ,g

in C∗
CPU. Let C be a C∗-algebra, and let c : C → A be a CPU-map such that f ◦c = g◦c Let d : C → E

be the restriction of c. It turns out we must prove that d is completely positive. Let n ∈ N be given.

We must show that Mnd : MnC → MnE is positive. Note that Mne is an injective MIU-map and thus an

isometry. So in order to prove that Mnd is positive it suffices to show that Mne◦Mnd = Mn(e◦d) = Mnc

is positive, which it is since c is completely positive. Thus e is the equaliser of f ,g in C∗
CPU. Hence U

preservers equalisers.

To show that U preserves products, let I be a set and for each i ∈ I let Ai be a C∗-algebra. We

will show that
⊕

i∈I Ai is the product of the Ai in C∗
CPU. Let C be a C∗-algebra, and for each i ∈ I,

let fi : C → Ai be a CPU-map. As before, let f : C →
⊕

i∈I Ai be the map given by f (x)(i) = fi(x)
for all i ∈ I and x ∈ C . Leaving the details to the reader it turns out that it suffices to show that f

is completely positive. Let n ∈ N be given. We must prove that Mn f : Mn(C ) −→ Mn(
⊕

i∈I Ai) is

positive. Let ϕ : Mn(
⊕

i∈I Ai) −→
⊕

i∈I Mn(Ai) be the unique MIU-map such that πi ◦ϕ = Mnπi for

all i ∈ I. Then ϕ is a MIU-isomorphism and thus to prove that Mn f is positive, it suffices to show

that ϕ ◦Mn f is positive. Let i ∈ I be given. We must prove that πi ◦ϕ ◦Mn f is positive. But we have

πi ◦ϕ ◦Mn f = Mnπi ◦Mn f = Mn(πi ◦ f ) = Mn fi, which is positive since f is completely positive. Thus
⊕

i∈I Ai is the product of the Ai in C∗
CPU and hence U preserves limits.
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With the same argument as in Theorem 9 the functor U satisfies the Solution Set Condition and

thus U has a left adjoint. It follows that Uop : (C∗
MIU)

op −→ (C∗
CPU)

op is Kleislian.

Example 14 (W ∗-algebras). Let W∗
NMIU be the category of von Neumann algebras (also called W ∗-

algebras) and the MIU-maps between them that are normal, i.e., preserve suprema of upwards directed

sets of self-adjoint elements. Let W∗
NPU be the category of von Neumann and normal PU-maps. Note

that W∗
NMIU is a subcategory of W∗

NPU. We will prove that (W∗
NPU)

op is Kleislian over (W∗
NMIU)

op.

It suffices to show that U has a left adjoint. Again we follow the lines of the proof of Theorem 5.

Products and equalisers in W∗
NMIU are the same as in C∗

MIU. It is not hard to see that the embedding

U : W∗
NMIU −→ W∗

NPU preserves limits. To see that U satisfies the Solution Set Condition we use the

same method as before: given a von Neumann algebra A , find a suitable cardinal κ such that the follow-

ing is a solution set.

I := { (C ,c) : C is a von Neumann algebra on a subset of κ

and c : A −→ C is a normal PU-map },

Only this time we take κ = #(℘(℘(A ))) instead of κ = #(A N ). We leave the details to the reader, but

it follows from the fact that given a subset X of a von Neumann algebra B the smallest von Neumann

subalgebra B′ that contains X has cardinality at most #(℘(℘(X))). Indeed, if H is a Hilbert space

such that B ⊆ B(H ) (perhaps after renaming the elements of B), then B′ is the closure (in the weak

operator topology on B(H )) of the smallest ∗-subalgebra containing X . Thus any element of B′ is the

limit of a filter — a special type of net, see paragraph 12 of [9] — of ∗-algebra terms over X , of which

there are no more than #(℘(℘(X))).
By a similar reasoning one sees that the opposite (W∗

NCPsU)
op of the category of normal completely

positive subunital linear maps between von Neumann algebras is Kleislian over (W∗
NMIU)

op. The exis-

tence of the adjoint to the inclusion W∗
NMIU → W∗

NCPsU is key in our construction of a model of Selinger

and Valiron’s quantum lambda calculus by von Neumann algebras, see [1].

3.2 Concrete description

In this note we have shown that the embedding U : C∗
MIU −→ C∗

PU has a left adjoint F , but we miss

a concrete description of FA for all but the simplest C∗-algebras A . What constitutes a “concrete

description” is perhaps a matter of taste or occasion, but let us pose that it should at least enable us to

describe the Eilenberg–Moore category E M (FU) of the comonad FU . More concretely, it should settle

the following problem.

Problem 15. Writing BOUS for the category of positive linear maps that preserve the unit between

Banach order unit spaces, determine whether E M (FU)∼= BOUS.

(An order unit space is an ordered vector space V over R with an element 1, the order unit, such that

for all v ∈ V there is λ ∈ [0,∞) such that −λ · 1 ≤ v ≤ λ · 1. The smallest such λ is denoted by ‖v‖.

See [4] for more details. If v 7→ ‖v‖ gives a complete norm, V is called a Banach order unit space.)

3.3 MIU versus PU

A second “problem” is to give a physical description (if there is any) of what it means for a quantum

program’s semantics to be a MIU-map (and not just a PU-map). A step in this direction might be to

define for a C∗-algebra A , a PU-map ϕ : A → C, and a,b ∈ A the quantity

Covϕ(a,b) := ϕ(a∗b) − ϕ(a)∗ϕ(b)
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and interpret it as the covariance between the observables a and b in state ϕ of the quantum system A . Let

T : A −→ B be a PU-map between C∗-algebras (so perhaps T is the semantics of a quantum program).

Then it is not hard to verify that T is a MIU-map if and only if T preserves covariance, that is,

Covϕ(Ta, T b) = Covϕ◦T (a,b) for all a,b ∈ A .
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A Additional Proofs

Proof of Lemma 7. Define LC := FC for all objects C of K ℓ(UF) and

L f := εFC2
◦F f

for f : C1 −→UFC2 from C. We claim this gives a functor L : K ℓ(UF)−→ D.

(L preserves the identity) Let C be an object of K ℓ(UF), that is, an object of C. Then the identity

on C in K ℓ(UF) is ηC. We have L(ηC) = εFC ◦FηC = idFC.
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(L preserves composition) Let f : C1 −→ UFC2 and g : C2 −→ UFC3 from C be given. We must

prove that L(g � f ) = Lg◦L f . We have:

L(g � f ) = L(µC3
◦UFg◦ f ) by def. of g � f

= εFC3
◦FµC3

◦FUFg◦F f by def. of L

= εFC3
◦FUεFC3

◦FUFg◦F f by def. of µC3

= εFC3
◦Fg◦ εFC2

◦F f by nat. of η

= Lg◦L f by def. of L

Hence L is a functor from K ℓ(UF) to D.

Let us prove that U ◦L = G. For f : C1 −→UFC2 from C we have

UL f = U(εFC2
◦F f ) by def. of L

= UεFC2
◦UF f

= µC2
◦UF f by def. of µC2

= G f by def. of G f .

Let us prove that L◦V = F . For f : C1 −→C2 from C be given, we have

LV f = L(ηC2
◦ f ) by def. of V

= εFC2
◦FηC2

◦F f by def. of L

= F f by counit–unit eq.

We have proven that there is a functor L : K ℓ(UF) → D such that U ◦L = G and L ◦V = F . We

must still prove that it is as such unique.

Let L′ : K ℓ(UF)→ D be a functor such that U ◦L′ = G and L′ ◦V = F . We must show that L = L′.

Let us first prove that L′ and L agree on objects. Let C be an object of K ℓ(UF), i.e., C is an object of C.

Since L′◦V = F and VC =C we have L′C = L′VC = FC = LC. Now, let f : C1 →UFC2 from C be given

(so f is a morphism in K ℓ(UF) from C1 to C2). We must show that L′ f = LU ≡ εFC2
◦F f . Note that

since F is the left adjoint of U there is a unique morphism f : FC1 −→ FC2 in D such that U f ◦ηC1
= f .

To prove that L′ f = L f , we show that both L f and L′ f have this property. We have

UL′ f ◦ηC1
= G f ◦ηC1

as U ◦L′ = G by assump.

= µC2
◦UF f ◦ηC1

by def. of G

= µC2
◦ηUFC2

◦ f by nat. of η

= f as UF is a monad.

By a similar argument we get UL f ◦ηC1
= f . Hence L f = L′ f .

Proof of Theorem 9. We use the symbols from Notation 6.

(i)=⇒ (ii) Suppose that L is an isomorphism. We must prove that F is bijective on objects. Note

that F = L ◦V , so it suffices to show that both L and V are bijective on objects. Clearly, L is bijective

on objects as L is an isomorphism, and V : C −→ K ℓ(UF) is bijective on objects since the objects

of K ℓ(UF) are those of C and VC =C for all C from C.



14 Quantum Programs as Kleisli Maps

(ii)=⇒ (i) Suppose that (ii) holds. We prove that L is an isomorphism by giving its inverse. Let D

be an object from D. Note that since F is bijective on objects there is a unique object C from C such

that FD =C. Define KC := D.

Let g : D1 → D2 from D be given. Note that by definition of K we have:

KD1

ηKD1 // UFKD1 UD1
Ug // UD2 UFKD2

Now, define Kg : KD1 →UFKD2 in D by Kg := Ug◦ηKD1
.

We claim that this gives a functor K : D −→ K ℓ(UF).
(K preserves the identity) For an object D of D we have

KidD = U idD ◦ηKD = ηKD,

and ηKD is the identity on KD in K ℓ(UF).
(K preserves composition) Let f : D1 −→ D2 and g : D2 −→ D3 from D be given. We must prove

that K(g◦ f ) = K(g) � K( f ). We have

K(g) � K( f ) = µKD3
◦UFKg◦K f by def. of �

= µKD3
◦UFUg◦UFηKD2

◦U f ◦ηKD1
by def. of K

= UεD3
◦UFUg◦UFηKD2

◦U f ◦ηKD1
by def. of µ

= Ug◦UεD2
◦UFηKD2

◦U f ◦ηKD1
by nat. of ε

= Ug◦U f ◦ηKD1
by counit–unit eq.

= K(g◦ f ) by def of K.

Hence K is a functor from D to K ℓ(UF). We will show that K is the inverse of L. For this we must

prove that K ◦L = idD and L◦K = idK ℓ(UF).

For a morphism g : D1 −→ D2 from D, we have

LKg = L(Ug◦ηKD1
) by def. of K

= εFKD2
◦FUg◦FηKD1

by def. of L

= g◦ εFKD1
◦FηKD1

by nat. of ε

= g by counit–unit eq.

For a morphism f : C1 −→UFC2 in C we have

KL f = K(εFC2
◦F f ) by def. of L

KL f dd = UεFC2
◦UF f ◦ηKFC1

by def. of K

= UεFC2
◦ηUFC2

◦ f by nat. of η

= f by counit–unit eq.

Hence K is the inverse of L, so L is an isomorphism.
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