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This result appears in the forthcoming text-
book [4] as well as in the book chapter [3].
The (universal) no-broadcasting theorem states
that there exists no quantum process A from 1 sys-
tem to 2, such that, for any quantum state p, discard-
ing (i.e. tracing out) either system of A(p) yields p
itself [2]. This theorem has been generalised within
the context of generalised probabilistic theories in [I].
Here, we generalise it within the context of process
theories. For more background on the process theory
framework and other details we refer to [3].

1 Background

A string diagram consists of a collection of boxes
which can have some inputs, depicted as wires coming
in the bottom of a box, and some outputs, depicted
wires coming out of the top. We allow arbitrary con-
nections between boxes, including those from inputs
to inputs, and outputs to outputs:

String diagrams can furthermore be reflected verti-

cally:
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indicating the adjoint of the diagram. A process the-
ory is an interpretation of all diagrams made up of
a fixed collection of boxes (as well as their adjoints)
and wires. A two-system state ¥ is ®-separable if
there exist states i1 and 1o such that:
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and that a process f is o-separable if there are effect
7 and state 1 such that:
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Suppose we have a o-non-separable process, and
imagine that it has some internal structure, say a
collection of tubes connecting some inputs to outputs:
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If we now compose this process with its vertical re-
flection, then these internal connections match up:

so one expects the resulting process also to be o-non-

separable. That is:
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We call this rule dagger-connectedness.
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Example 1.1. For linear maps, o-separable means
rank-1. So, dagger-connectedness follows from the



fact that the rank of fT o f is the same as the rank of
f. However, this fails for relations. Consider:

R:={(0,0),(0,1),(1,1)} = {0,1} x {0, 1}

Clearly R is o-non-separable, but Rf o R is o-
separable.

By a quantum system we mean a wire of the form:

2 Main result

Consider a process theory that admits string dia-
grams and obeys dagger-connectedness.

Proposition 2.1. If a reduced state of p (i.e. a state
arising from discarding some part of p) is pure:
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then p ®-separates as follows:
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Proof. Writing p in the form :
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Then, by dagger-connectedness there exist 1, ¥ s.t:
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Plugging in to (3) yields the required separation:

Then, substituting into we can conclude that
Yo = ¢. O

Proposition 2.2. If a reduced process is pure:




then it ®-separates as follows:
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Proof. Bend the wire in (4] )
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By Proposition [2.1] it separates as follows:
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Unbend the wire and we're done. O

Theorem 2.3. If there is a quantum broadcasting
process, that is, a quantum process A s.t.:
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then every plain wire o-separates, and consequently,
every process o-separates. Consequently, non-trivial
process theories cannot have such a process.

Proof. By equation @l) the reduced state of A is
pure, so by Proposition [2.2] we have:
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for some state p. Hence it follows that:
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3 Discussion

Clearly the crux of this result is the influence of
dagger-connectedness on the ‘doubled’ form of quan-
tum processes.

In fact, we know that dagger-connectedness is
strictly stronger than no-broadcasting since the pro-
cess theory obtained from ‘doubling’ relations also
satisfies no-broadcasting [5], yet relations themselves
fail dagger-connectedness, as we saw in Example

Furthermore, with the help of so-called ‘spiders’ for
capturing the interaction with classical data, many
other results arise from dagger-connectedness [4]. No-
table examples are the existence of entangled states:
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and the fact that pure process cannot arise from non-
trivial convex mixtures of processes:
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