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We use non-standard analysis to define a category ?Hilb suitable for categorical quantum mechanics
in arbitrary separable Hilbert spaces, and we show that standard bounded operators can be suitably
embedded in it. We show the existence of unital special commutative †-Frobenius algebras, and we
conclude ?Hilb to be compact closed, with partial traces and a Hilbert-Schmidt inner product on
morphisms. We exemplify our techniques on the textbook case of 1-dimensional wavefunctions with
periodic boundary conditions: we show the momentum and position observables to be well defined,
and to give rise to a strongly complementary pair of unital commutative †-Frobenius algebras.

1 Introduction

Throughout the past decade, the framework of categorical quantum mechanics (CQM) [1, 4, 5, 12]
has achieved remarkable success in describing the foundations of finite-dimensional quantum theory,
and the structures behind quantum information protocols and quantum computation. Unfortunately,
attempts to extend the same techniques to the treatment of infinite-dimensional case have so far achieved
limited success. Although the work of [2] on H?-algebras provides a characterisation of non-degenerate
observables in arbitrary dimensions, much of the traditional machinery of CQM is nonetheless lost, e.g.:

(a) dagger compact structure: operator-state duality and Hilbert-Schmidt inner product;
(b) Hopf algebras and complementarity: mutually unbiased observables;
(c) strong complementarity: quantum symmetries, the CCRs and the position observables.

In this work, we resort to non-standard analysis à la Robinson [11] to tackle the issue of infinitesimal and
infinite quantities behind unbounded operators, Dirac deltas and plane-waves: these are key ingredients of
mainstream quantum mechanics which the categorical framework has thus failed to adequately capture,
and we demonstrate how they can be used to recover a great deal of CQM machinery in infinite-dimensions.
Applications of non-standard analysis to quantum theory already appeared in the past decades [6, 8, 10],
but in a different spirit and with different objectives in mind.

In Section 2, we provide a basic summary of the non-standard techniques we will be using. In
Section 3, we construct a category ?Hilb of non-standard separable Hilbert spaces, and we relate it to the
category sHilb of standard separable Hilbert spaces and bounded linear maps. In Section 4 we use our
newly defined category to extend CQM from finite to separable Hilbert spaces, and we treat the textbook
case of position and momentum observable for 1-dimensional wavefunctions with periodic boundary
conditions.

We begin by showing the existence of unital special commutative †-Frobenius algebras, and we
deduce that ?Hilb is a dagger compact category. From a countable basis of momentum eigenstates, we
define the position eigenstates as Dirac deltas, and construct the position and momentum observables
as a unital special commutative †-Frobenius algebras. Furthermore, we show these observables to be
strongly complementary: this is the categorical counterpart of the Weyl canonical commutation relations,
and opens the way to future applications of the formalism to infinite-dimensional quantum symmetries
and dynamics (within the framework of [7]).
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2 Non-standard analysis

2.1 Non-standard models

Non-standard analysis has its roots in the field of higher order logic [11], where universal and existential
quantifiers are not only allowed to range over individuals, but also over relations between individuals,
relations between relations, and so on. A model of a higher order theory can then be thought as a family
M = {Bτ}τ∈T of sets, indexed by a set T of types, with Bτ containing all relations of type τ in the model.

Given a higher order theory, with a (standard) model M = {Bτ}τ∈T , the ultraproduct construction
from [11] produces a non-standard model1 ?M = { ?Bτ}τ∈T . The set ?Bτ of relations of type τ in the
non-standard model contains Bτ as a subset, and in particular the individuals B0 of the standard model
form a subset of the individuals ?B0 of the non-standard model. The non-standard model, however, is not
full: the set ?Bτ does not contain, in general, all set-theoretic relations of type τ that can be constructed
from the non-standard individuals. In order to distinguish the relations in ?Bτ from the larger family of set
theoretic ones, we will refer to the former as internal relations, and to the latter as external relations. Also,
we will refer to the relations in Bτ as standard relations, and we will freely confuse them with the ones in
the standard model. The main result used to prove existence and properties of internal individuals/relations
in a non-standard model is called transfer theorem, and can be summarised as follows.

Theorem 2.1 (Transfer Theorem). Let Φ be a higher order formula which is admissible2 in the higher
order theory. Then Φ holds in the standard model M with quantifiers ranging over standard relations if
and only if Φ holds in the non-standard model ?M with quantifiers ranging over internal relations.

In the forward direction, the transfer theorem says that every property of standard individuals/relations in
the standard model applies to internal individuals/relations in the non-standard model. In the backward
direction (which will not play a direct role in this work), the transfer theorem says that any statement
holding in ?M also holds in M, as long as it is admissible in M.

2.2 The structure of ?N

The non-standard naturals ?N form an ordered semiring, with the standard naturals N as an initial
segment. We refer to the standard naturals as finite naturals, and to the internal naturals in ?N−N as
infinite naturals: this is because any infinite natural κ satisfies κ > n for all n ∈ N.

By transfer theorem, many properties of N transfer to ?N: for example, from the fact that every
non-empty set of standard naturals has a minimum we conclude that every non-empty internal set of
non-standard naturals also has a minimum, and arguments by induction can be carried out on non-empty
internal subsets of ?N. However, the requirement that the set be internal is key: the set of all infinite
naturals, for example, has no minimum (and hence it cannot be internal).

If (an)n∈N is a sequence of natural numbers defined by some formula ∀n ∈ N∃an ∈ NΦ(n,an) in the
standard model, then by transfer theorem there exists a unique corresponding standard sequence (an)n∈?N

in the non-standard model, coinciding with the (an)n∈N for all finite naturals. Furthermore, for any m ∈ N
the naturals sm := ∑

m
n=0 an and pm := ∏

m
n=0 an exist in the standard model, and hence the non-standard

naturals sm and pm exist in the non-standard model for all m ∈ ?N: for example, if (an)n∈N is the sequence
of finite primes, then pκ := ∏

κ
n=0 an for any infinite natural κ exists, divisible by all finite primes.

The non-standard integers ?Z similarly relate to the standard integers Z: they form a ring, with Z
as a sub-ring and ?N as a sub-semiring, and they have both positive and negative infinities.

1Non-standard models are denoted by a prefix ?, bearing no relation to the postfix ? of complex conjugation.
2I.e. one which does not contain any non-standard individual/relational symbols.
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2.3 The structure of ?R

The non-standard reals ?R form an ordered field, with the standard reals R as a sub-field and the non-
standard integers ?Z as a subring. They are a non-archimedean field, with a subring M1 of infinitesimals,
smaller in absolute value than all positive standard reals. The non-zero infinitesimals have inverses, the
infinite reals, larger in absolute value than all positive standard integers/reals.

The finite reals (those with absolute value bounded by some positive standard integer) also form a
subring M0. By using Dedekind cuts it is possible to show that the ring quotient M0/M1 is isomorphic to
R: we refer to the corresponding surjective ring homomorphism st( ) : M0→ R as the standard part
(which is the identity on the subring R ≤M0), and we denote the corresponding quotient equivalence

relation on M0 by x' y
de f⇐⇒ |x− y| is an infinitesimal.

Any sequence (an)n∈N of reals definable in the standard model has a corresponding non-standard
extension (an)n∈?N by transfer theorem: it coincides with the original sequence on all finite naturals,
but will not in general be valued in the standard reals on infinite naturals. It is possible to show that
limn→∞ an = a ∈ R in the standard model if and only if an ' a for all infinite naturals n in the non-standard
model. Furthermore, (an)n∈N is bounded (say by |an| ≤ z ∈ R+) in the standard model if and only if an is
a finite real (with |an| ≤ z) for all infinite naturals in the non-standard model.

Real-valued functions f : I→ R in the standard model can similarly be extended by transfer theorem
to real-valued f : ?I→ ?R in the non-standard model, coinciding with the original function on all standard
reals in ?I. Then limx→a f (x) = c in the standard model if and only if in the non-standard model we have
f (x)' c for all x' a (except perhaps at x = a). As a consequence, f is continuous at a ∈ I in the standard
model if and only if in the non-standard model we have f (x)' f (a) whenever x' a.

The non-standard complex numbers ?C similarly extend C with infinitesimals and infinities.

2.4 Non-standard Hilbert spaces

A standard (real or complex) Hilbert space V has a non-standard counterpart ?V (a ?R- or ?C-vector
space), which contains all vectors of V as a C-linear (but not ?C-linear) subspace. The non-standard
space ?V also contains a C-linear subspace ?V1 of infinitesimal vectors (with infinitesimal norm), and
a C-linear subspace ?V0 of near-standard vectors (infinitesimally close to standard vectors). There is
a standard part C-linear map st( ) : ?V0→V mapping the near-standard vectors surjectively onto V ,
with the infinitesimal vectors as kernel: the equivalence relation ' for near-standard vectors is defined
accordingly, with |ψ〉 ' |φ〉 if and only if |ψ〉− |φ〉 is an infinitesimal vector.

An interesting example of infinite vector can be obtained by transfer theorem. Consider a standard
complex Hilbert space V which is separable, i.e. comes with a complete orthonormal basis |en〉n∈N+

which is countable3. If (an)n∈N+ is a standard sequence of complex numbers, then the vector |ψk〉 :=
∑

k
n=1 an|en〉 ∈ V exists for all positive standard naturals k ∈ N+: by transfer theorem, the vector |ψκ〉

exists in ?V for any infinite natural κ , where the corresponding non-standard sequence (an)n∈?N+ is used
to provide values. In particular, the vector ∑

κ
n=1 |en〉 ∈ ?V exists, and has squared norm κ ∈ ?R+.

The transfer theorem can similarly be used to define non-standard linear operators (not necessarily
continuous/bounded): if (anm)n,m∈N+ is a doubly-indexed sequence (a.k.a. a matrix) of complex numbers,
then the linear operator ∑

κ
m,n=0 amn |em〉〈en| : ?V → ?V exists for any infinite natural κ (where (anm)n,m∈?N+

is the unique internal non-standard sequence given by transfer theorem). This is a remarkable result, but it
comes with some tricky limitations which will be presented in the next section.

3We index our vectors in the positive naturals N+ for reasons of convenience: this way a generic vector in a d-dimensional
vector space is written cleanly as ∑

d
n=1 vn|en〉.
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3 The category ?Hilb

The main idea behind our construction is to legitimise, through non-standard analysis, notations such
as ∑n∈N+ |en〉〈en| for the identity operator, ∑n∈N+ |en〉 for the unit of an infinite-dimensional Frobenius
algebra, ∑n,m∈N+ |en〉anm〈am| for a general matrix (anm)n,m∈N+ . The transfer theorem doesn’t allow us
to conclude the existence of sums strictly over N+ (nor over the entirety of ?N), but it does allow us to
sum up to some infinite natural κ: the sums ∑

κ
n=1 |en〉〈en|, ∑

κ
n=1 |en〉 and ∑

κ
n,m=1 |en〉anm〈em| all describe

well-defined internal linear maps of non-standard Hilbert spaces. Unfortunately, Pκ := ∑
κ
n=1 |en〉〈en|

does not behave like the identity over the space of all internal linear maps, but rather it is as a subspace
projector: in order to turn these projectors into identities, we use a construction similar to that of the
Cauchy/idempotent4 completion. As it turns out, this procedure preserves all standard bounded operators,
and enough non-standard ones to do many of the things we care about in categorical quantum mechanics.

3.1 Definition of the category

We proceed to define the category of non-standard separable Hilbert spaces5, which we will denote by
?Hilb. All proofs of results in this and future sections can be found in the Appendix. As objects we take
separable (standard) Hilbert spaces together with a witness of separability, i.e. pairs H :=

(
V, |en〉κn=1

)
of

a standard separable Hilbert space V and either

(i) if V is finite-dimensional: a finite orthonormal basis |en〉κn=1, where κ := dimV ∈ N;

(ii) if V is infinite-dimensional: the unique extension (by transfer theorem) up to some infinite natural
κ ∈ ?N of a complete countable orthonormal basis |en〉n∈N+ for V .

For each object H :=
(
V, |en〉κn=1

)
, let the truncating projector PH : H →H be the following internal

linear map ?V → ?V , where we refer to dimH := κ ∈ ?N as the dimension of object H :

PH :=
dimH

∑
n=1
|en〉〈en|. (3.1)

We also use notation |H | :=V to refer to the standard separable Hilbert space underlying an object H
of ?Hilb. The morphisms in the category ?Hilb are then defined as follows:

Hom?Hilb [H ,G ] := { PG ◦F ◦PH | F : ?|H | → ?|G | internal linear map} . (3.2)

Because the truncating projectors for H and G are internal linear maps, the composite PG ◦F ◦PH is an
internal linear map ?|H | → ?|G |, which we shall denote by F̄ . Composition of morphisms in ?Hilb is
simply composition of internal linear maps

Ḡ · F̄ := Ḡ◦ F̄ = (PG ◦G◦PH )◦ (PH ◦F ◦PK ) = PG ◦ (G◦PH ◦F)◦PK , (3.3)

where we used associativity of composition and idempotence of truncating projectors. Idempotence of the
projectors, in particular, means that they provide suitable identity morphisms. Indeed if we define

idH := PH ◦ id?|H | ◦PH = PH ◦PH = PH , (3.4)

it is straightforward to check that idG · F̄ = PG ◦PG ◦F ◦PH = PG ◦F ◦PH = F̄ , and similarly for F̄ · idH .

4Projectors are self-adjoint idempotents.
5We have complex Hilbert spaces in mind, but the construction is identical for real Hilbert spaces.
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Now consider two naturals κ,ν ∈ ?N, and define the internal map

ςκ,ν(n,m) := (n−1)ν +m, (3.5)

which is an internal bijection between {1, ...,κ}×{1, ...,ν} and {1, ...,κν}. Also, we will simply write
ς(n,m) when no confusion can arise. A tensor product can be defined on the objects of ?Hilb as follows,
with tensor unit (C,1):(

V, |en〉κn=1

)
⊗
(

W, | fm〉νm=1

)
:=
(

V ⊗W,
(
|en〉⊗ | fm〉

)κν

ς(n,m)=1

)
. (3.6)

In order to define the tensor product on morphisms, we need to first note that morphisms F̄ : H → G in
?Hilb are uniquely determined by certain matrices {1, ...,dimG }×{1, ...,dimH }→ ?C:

F̄ = PG ◦F ◦PH =
dimG

∑
m=1

dimH

∑
n=1
| fm〉

(
〈 fm|F |en〉

)
〈en|. (3.7)

We introduce the notation F̄mn := 〈 fm|F |en〉, and define the tensor product of two morphisms F̄ : H → G
and Ḡ : H ′→ G ′ to be the familiar tensor product of matrices:

F̄⊗ Ḡ :=
dimG dimG ′

∑
ς(m,m′)=1

dimH dimH ′

∑
ς(n,n′)=1

| fm〉⊗ | f ′m′〉 F̄mnḠm′n′ 〈en|⊗ 〈e′n′ |. (3.8)

The map F̄⊗ Ḡ is an internal linear map ?|H | ⊗ ?|H ′| → ?|G | ⊗ ?|G ′| by transfer theorem. Also we
have that PH ⊗PH ′ = PH ⊗H ′ , and that F̄⊗ Ḡ = PG⊗G ′ ◦

(
F̄⊗ Ḡ

)
◦PH ⊗H ′ . Hence, F̄⊗ Ḡ is a genuine

morphism H ⊗H ′→ G ⊗G ′. It is straightforward to check that this results in a well defined tensor
product6, and the following braiding operator turns ?Hilb into a symmetric monoidal category (SMC):

σH G :=
dimH dimG

∑
ς(n,m)=1

| fm〉⊗ |en〉 〈en|⊗ 〈 fm|. (3.9)

Finally, one can define a dagger on morphisms by taking the conjugate transpose on the matrix represen-
tation given by (3.7), obtaining the following morphism (by transfer theorem):

(F̄)† :=
dimH

∑
n=1

dimG

∑
m=1
|en〉F̄?

mn〈 fm|. (3.10)

It is straightforward to check that (F̄)† is a morphism G →H whenever F̄ is a morphism H → G , that
the dagger is functorial and that it satisfies all the compatibility requirements with the monoidal structure.
The content of this section can thus be summarised by the following result.

Theorem 3.1. The category ?Hilb is a †-SMC, with tensor product and dagger defined by (3.6, 3.8, 3.10).

6An elementary proof of associativity is provided in the appendix.
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3.2 Standard bounded linear maps in ?Hilb

In order to do categorical quantum mechanics in ?Hilb, we have to first establish its relationship with the
more traditional arena of standard Hilbert spaces and bounded linear maps. By construction, we don’t
expect ?Hilb to contain all of Hilb, as the objects were explicitly chosen to be separable (rather than
arbitrary) Hilbert spaces. We expect, however, that the full subcategory sHilb of separable Hilbert spaces
and bounded linear maps will be faithfully embedded in it.

We will refer to morphisms |ψ〉 :≡ ∑
dimH
n=1 ψn|en〉 : ?C→H as vectors or states in H , and the

?C-valued inner product induced by the dagger can be written as 〈φ |ψ〉 = ∑
dimH
n=1 φ ?

n ψn. We will refer
to vectors |ψ〉 having finite squared norm 〈ψ|ψ〉 as finite vectors, and to vectors having infinitesimal
squared norm as infinitesimal vectors. Difference by infinitesimal vectors gives rise to the following
equivalence relation, corresponding to the notion of convergence of vectors in norm:

|φ〉 ' |ψ〉 de f⇐⇒ |φ〉− |ψ〉 is infinitesimal. (3.11)

We will say that a morphism F̄ : H → G in ?Hilb is continuous if for any |ψκ〉, |φκ〉 : ?C→H satisfying
|ψκ〉 ' |φκ〉 we have F̄ |ψκ〉 ' F̄ |φκ〉. Furthermore, the operator norm on some homset Hom?Hilb [H ,G ]
can be defined as follows7:

||F̄ ||op := sup
〈ψ|ψ〉=1

√
〈ψ|F̄†F̄ |ψ〉. (3.12)

We will say that a morphism F̄ : H → G is bounded if its operator norm ||F̄ ||op is finite. Just as it
happens in the case of standard Hilbert spaces, throughout this work we will confuse bounded and
continuous, thanks to the following result.

Lemma 3.2. Let F̄ : H → G be a morphism in ?Hilb. The following are equivalent:

(i) the operator norm ||F̄ ||op is finite;

(ii) F̄ |ξκ〉 : ?C→ G is infinitesimal whenever |ξκ〉 : ?C→H is infinitesimal;

(iii) if |ψκ〉, |φκ〉 : ?C→H satisfy |ψκ〉 ' |φκ〉, then we have F̄ |ψκ〉 ' F̄ |φκ〉.
The following equivalence relation embodies the notion of convergence in operator norm:

F̄ ∼ F̄ ′
de f⇐⇒ ||F̄− F̄ ′||op is infinitesimal. (3.13)

This equivalence relation is C-linear, by triangle inequality, and it commutes with the dagger. It also
commutes with composition and tensor product, as long as we restrict ourselves to continuous operators.

Lemma 3.3. Suppose that F̄, F̄ ′, Ḡ and Ḡ′ are all continuous. Then the following statements hold:

Ḡ · F̄ ∼ Ḡ′ · F̄ ′ whenever both F̄ ∼ F̄ ′ and Ḡ∼ Ḡ′,

Ḡ⊗ F̄ ∼ Ḡ′⊗ F̄ ′ whenever both F̄ ∼ F̄ ′ and Ḡ∼ Ḡ′. (3.14)

We say that a morphism Ḡ is near-standard (in the operator norm) if it satisfies Ḡ ∼ f̄ for some
standard bounded linear map f . From now on, we will always use lowercase letters to denote standard
bounded linear maps. Near-standard morphisms are in particular continuous, and form a sub-†-SMC of
?Hilb, which we shall denote by ?Hilb(std). By Lemma 3.3 this subcategory can be enriched to become a
strict †-symmetric monoidal 2-category, with 2-cells given by the identity 2-cell and the idempotent 2-cell
∼. This observation finally allows us to relate ?Hilb and sHilb.

7Both the sup and the square root are simply extended from R+ to ?R+ by transfer theorem, as usual. The definition of the
operator norm is independent of the equivalence relation '.
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We define a strict standard part functor st( ) : ?Hilb(std)→ sHilb as follows:

(i) st(V, |en〉κn=1) :=V ;

(ii) st(F̄) := the unique f ′ such that f ′ is a standard bounded linear map and F̄ ∼ f̄ ′.

We fix an infinite non-standard natural ω , and define a weak functor trunc[ ]ω : sHilb→ ?Hilb(std) as
follows (with functoriality only up to ∼):

(i) trunc[V ]ω := (V,(|en〉)n), where the orthonormal bases are chosen in such a way as to respect tensor
product of ?Hilb(std) (see the Appendix for more details about this choice);

(ii) trunc[ f ]ω := f̄ on morphisms, and Lemma 3.3 guarantees trunc[G ·F ]ω ∼ trunc[G]ω · trunc[F ]ω .

Theorem 3.4. The following results relate ?Hilb(std) and sHilb:

(i) st( ) is a strict full functor of †-SMCs, which is surjective on objects;

(ii) trunc[ ]ω is a weak faithful functor from a †-SMCs to a †-symmetric monoidal 2-category, which is
essentially surjective on objects; its restriction to the subcategory fdHilb is strictly functorial;

(iii) st(trunc[ f ]ω) = f , for all standard bounded morphisms f of separable Hilbert spaces;

(iv) st(trunc[V ]ω) =V , for all objects V of sHilb;

(v) For all objects H of ?Hilb(std), there is a (unique) standard unitary ūH : H → trunc[st(H )]ω
such that st(ūH ) = idst(H ).

(vi) ū†
G trunc[st(F̄)]ω ūH ∼ F̄ for all morphisms F̄ : H → G in ?Hilb(std)

The essence of Theorem 3.4 is that sHilb is equivalent to the subcategory ?Hilb(std) of ?Hilb given by
near-standard morphisms in the operator norm, as long as we take care to equate morphisms which are
infinitesimally close. The equivalence allows one to prove results about sHilb by working in ?Hilb and
taking advantage of the CQM machinery introduced in the next Section: in a typical scenario, one would
(i) start from sHilb, (ii) lift to ?Hilb(std) by using trunc[ ]ω , (iii) work in ?Hilb, (iv) obtain a result in
?Hilb(std), (v) descend to sHilb again by using st( ). This is conceptually akin to using the two directions
of the transfer theorem to prove results of standard analysis using non-standard methods.

However, one shouldn’t necessarily discount ?Hilb as just being a category of handy mathematical
tricks: as we shall now proceed to see, a number of objects of concrete interest in the everyday practice of
quantum mechanics (such as the position/momentum observables and eigenstates) are native to that richer
environment, and confer it its own independent dignity.

4 Infinite-dimensional categorical quantum mechanics

4.1 Classical structures in ?Hilb

Our main motivation comes from the work of [2] on commutative H?-algebras, a particular class of
non-unital special commutative †-Frobenius algebras8 (non-unital †-SCFAs, in short). It is an established
result that approximate units for the algebras exist in separable Hilbert spaces: we will show that, in our
non-standard framework, they can be made truly unital.

Theorem 4.1 (From [2]). A non-unital †-SCFA ( , ) on an object V of sHilb is an H?-algebra if and
only if it corresponds to an orthonormal basis |en〉n∈N+ of V such that · |en〉= |en〉|en〉.

8In [2], non-unital special commutative †-Frobenius algebras are simply referred to as Frobenius algebras. In this work we
will refer to them in full as special commutative †-Frobenius algebras. We will specify non-unital or unital explicitly.
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Theorem 4.2 (From [2, 3]). A †-SCFA ( , ) on an object V of sHilb is an H?-algebra if and only if
there is a sequence |En〉n∈N+ such that for all |a〉 : C→V we have:

(i) · (|En〉⊗ |a〉) converges to |a〉;

(ii) (idV ⊗〈a|) · · |En〉 converges.

If this is so, then we can take |En〉 := ∑n′≤n |en′〉.
The sequence |En〉n∈N+ itself doesn’t converge in sHilb, because the state ∑n∈N+ |en〉 would have infinite
norm. In our non-standard context, however, the state ∑

κ
n=1 |en〉 is a well-defined, internal state for

H = (V, |en〉κn=1). This opens the way to the definition of unital †-SCFAs on all objects of ?Hilb.

Theorem 4.3. Let H = (V, |en〉κn=1) be an object in ?Hilb, and | fn〉n∈N+ be a standard orthonormal basis
for V . Then the following comultiplication and counit define a weakly unital, weakly special commutative
†-Frobenius algebra on H (i.e. one where the Unit and Speciality laws hold only up to ∼):

:=
κ

∑
n=1
| fn〉⊗ | fn〉 〈 fn| :=

κ

∑
n=1
〈 fn| (4.1)

We refer to it as the classical structure9 for | fn〉n. When | fn〉n is the chosen orthonormal basis |en〉n for
H , the algebra is strictly unital and strictly special, i.e. a unital †-SCFA.

The existence of unital †-SCFAs makes ?Hilb a dagger compact category, with self-dual objects.

Theorem 4.4. The category ?Hilb is compact closed, with cap and cup on an object H = (V, |en〉κn=1)
derived from the classical structure for the chosen orthonormal basis |en〉n:

:= =
κ

∑
n=1
〈en|⊗ 〈en| := =

κ

∑
n=1
|en〉⊗ |en〉 (4.2)

More in general, any classical structure in ?Hilb can be used to define a weak cap and a weak cup,
satisfying weak yanking equations (i.e. with equality only up to ∼).

The compact closed structure gives rise to a trace in the usual way:

Tr[F̄ ] := F̄ =
dimH

∑
n=1

F̄nn TrKH ,G [Ḡ] := Ḡ

H

G

K

=
dimG

∑
m=1

dimH

∑
n=1

dimK

∑
k=1
| fm〉Ḡς(m,k)ς(n,k)〈en|

(4.3)
In particular, we see that the notation dimH := κ for H = (V, |en〉κn=1) was well chosen: Tr[idH ] =

∑
κ
n=1 1 = κ = dimH . The trace can also be used to endow the homset Hom?Hilb [H ,G ], which we’ve

already seen to be a ?C-vector space, with the following ?C-valued Hilbert-Schmidt inner product:

(
Ḡ, F̄

)
:= Tr[Ḡ†F̄ ] =

dimG

∑
m=1

dimH

∑
n=1

Ḡ?
mnF̄mn. (4.4)

This is exactly the inner product that one would get by enriching the category ?Hilb in itself via compact
closure.

9The terminology classical structure, in the context of ?Hilb, will refer to weakly unital, weakly special, commutative
†-Frobenius algebras. This is in accordance with the weak functoriality of trunc[ ] seen in the previous section.
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4.2 Wavefunctions with periodic boundaries

As a sample application of the structures presented above, we cover the theory of wavefunctions on
a 1-dimensional space with periodic boundary conditions: these live in L2[R/(LZ)]∼= L2[S1], where L
is the length of the underlying space. The momentum eigenstates, or plane-waves, form a countable
orthogonal basis for L2[R/(LZ)], indexed by n ∈ Z (in this section, n,m,k,h will range over integers):

χn := x 7→ e−i(2π/L)nx. (4.5)

The plane-wave |χn〉 is the eigenstate of momentum nh̄. Let θ(n) := |2n|+ 1−sign(n)
2 (with sign(0) :=−1)

be a bijection Z→N+. We can obtain a countable orthonormal basis |el〉l∈N+ for L2[R/(LZ)] as follows:

|eθ(n)〉 :=
1√
L
|χn〉 for all n ∈ Z. (4.6)

Now we shift our attention to the object (L2[R/(LZ)], |el〉κl=1) of ?Hilb, with κ = 2ω +1 some odd infinite
natural10. As a shorthand for ∑

κ
l=1 |χθ−1(l)〉, and other cases where the index is bijected to the integers, we

will simply re-index over the non-standard integers {−ω, ...,+ω} (such as in ∑
+ω
n=−ω |χn〉). In particular,

we will write our chosen object as (L2[R/(LZ)], 1√
L
|χn〉+ω

n=−ω), or simply L2[R/(LZ)] when no confusion
can arise. Now that we established the role of momentum eigenstates in our framework, it’s time to turn
our attention to position eigenstates. On a continuous space, position eigenstates are given by Dirac delta
functions, and as a consequence are not associated with well-defined standard vectors. Here, we will
define them in terms of the basis of momentum eigenstates, as follows, and then show that they coincide
with their more traditional formulation in terms of Dirac deltas. Let x0 ∈ R/(LZ) be a standard point of
the underlying space, then we define the position eigenstate at x0 to be the following non-standard state:

|δx0〉 :=
1√
L

+ω

∑
n=−ω

χn(x0)
? 1√

L
|χn〉. (4.7)

Theorem 4.5. The position eigenstates are orthogonal (up to infinitesimals). Furthermore, they behave
as Dirac deltas, i.e. they satisfy 〈δx0 | f̄ 〉 ' f (x0) for all standard smooth f ∈ L2[R/(LZ)]. The position
eigenstates are also unbiased with respect to the momentum eigenstates, in the sense that |〈δx0 |χn〉|= 1
independently of n or x0.

Mutual unbias (aka complementarity) is already sufficient to provide a first approximation of the usual
position/momentum uncertainty principle: it can be used to show that measuring any state in the position
observable and then in the momentum observable (or vice versa) always yields the totally mixed state. We
sketch the argument informally in the appendix, and we leave further treatment of the connection between
complementarity and the uncertainty principle (in its various versions) to future work.

In the traditional setting of L2[R], momenta are the infinitesimal generators of space translations:

|x+ y〉= exp[i
xp
h̄
]|y〉. (4.8)

The following theorem shows the relationship between momentum eigenstates and position-space transla-
tion in our framework, and relates it to the special case of Equation 4.8. This more general relationship
can be extended to cases (such as the finite-dimensional ones of [7]) where momenta cannot be valued in
a subset of the reals.

10The notions of oddness and evenness extend from N to ?N by transfer theorem, and by saying that some infinite non-standard
natural κ ∈ ?N is odd we mean exactly that κ = 2ω +1 for some (necessarily infinite) non-standard natural ω ∈ ?N. Note that
the infinite natural ω here has nothing to do with the ordinal ω from set theory.
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Theorem 4.6. Let ( , , , ) be the classical structure for the chosen orthonormal basis of normalised
momentum eigenstates. Then the monoid ( , ) endows the set

{
[
√

L|δx〉]'
∣∣ x ∈ R/(LZ)

}
of position

eigenstates with the abelian group structure of position-space translation (R/(LZ),⊕,0):

δx⊕y
√

L

=

δx
√

L δy
√

L

(4.9)

where the compact abelian group structure (L2[R/(LZ)],⊕,0) is given by real addition modulo L ∈ R.
This can be equivalently written in the following form, drawing an explicit parallelism with Equation
(4.8):

|δx⊕y〉=
[ 1
√

L
2

+ω

∑
n=−ω

χn(x)?|χn〉〈χn|
]
|δy〉, (4.10)

where χn(x)? ' 〈χn|δx〉 is nothing but exp[i x p
h̄ ], for a given (quantised) momentum eigenvalue p = nh̄

and corresponding momentum eigenstate |χn〉. As a consequence, we will refer to this fact by saying that
momenta generate position-space translation.

In quantum foundations, observables are often identified with complete families of orthogonal projec-
tors, rather then with self-adjoint operators11. In our case, the momentum observable is simply the family
(Pnh̄)nh̄ of orthogonal projectors on L2[R/(LZ)] indexed by the set of quantised momenta {nh̄ |n ∈ Z},
where the projectors are 1-dimensional and given by Pnh̄ := |χn〉〈χn|. In categorical quantum mechanics,
on the other hand, observables are identified with special †-Frobenius algebras: the following theorem
connects the two definitions.

Theorem 4.7. The momentum observable can be obtained from the comultiplication of the classical
structure for momentum eigenstates as follows:

Pnh̄ =

χn
1√
L

(4.11)

The definition of a position observable is not as straightforward, because the position eigenstates
don’t form a countable orthonormal basis. This inconvenience, however, allows us to make an interesting
detour. The momentum observable is given by the comultiplication , and its adjoint acts as the compact
abelian group R/(LZ) on the set of (equivalence classes under ' of) position eigenstates. This latter
statement corresponds to momenta generating position-space translations (in terms of Fourier theory, the
Pontryagin dual of the compact abelian group R/(LZ) is the discrete abelian group Z). Dually, we know
that positions should generate momentum-space translations (because R/(LZ) is Pontryagin dual to Z),
and hence we expect the adjoint of the position observable to act as the discrete abelian group Z on the
space of momenta. Thus, in order to obtain the position observable, we first define the desired group
action on the chosen orthonormal basis of momentum eigenstates.

11Complete families may be indexed by any set, while self-adjoint operators require indices to be real numbers. This is not
suitable, for example, for all those applications (such as those of [7]) where momenta/positions are not naturally valued in a
subset of the reals.
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Consider the binary function a⊕ b := a+ b (mod 2N + 1), where representatives for the 2N + 1
remainder classes are chosen in the set {−N, ...,+N}: for every N, this function is defined in the standard
theory of Z, and endows {−N, ...,+N} with the group structure of Z2N+1. By transfer theorem, a similar
group operation exists on the internal set {−ω, ...,+ω} of ?Z, endowing it with the group structure of
Z2ω+1. Remarkably, for any two finite integers n,m∈Z we have n⊕m = n+m (because n,m < ω implies
n+m < ω , so no modular reduction occurs). Now consider the following morphisms of ?Hilb:

:= 1√
L

3

+ω

∑
n=−ω

+ω

∑
m=−ω

|χn⊕m〉 〈χn|⊗ 〈χm| := 1√
L
|χ0〉 (4.12)

Theorem 4.8. ( , , , ) is a unital commutative †-Frobenius algebra, the group algebra of Z2ω+1.
Furthermore, it is quasi-special, with normalisation factor (2ω +1):

= (2ω +1) (4.13)

Furthermore, the group algebra for Z2ω+1 copies the (rescaled) position eigenstates:

=

δx
√

L δx
√

L δx
√

L

(4.14)

As a consequence, we will also refer to it as the classical structure for position eigenstates.
We have seen in Theorem 4.6 that momenta generate position-space translation, in the sense that the

multiplication and unit of the classical structure for momentum eigenstates (which, as shown by
Theorem 4.7, corresponds to the momentum observable) endow the set of position eigenstates with the
group structure of position-space translation. The next result (elementary in proof, by the very definition
of and ) shows that, dually, positions generate momentum-space translations, in the sense that the
multiplication and unit of the classical structure for position eigenstates (which Theorem 4.10 below
will show to correspond to the position observable) endow the set of momentum eigenstates with the
group structure of momentum-space translation.
Theorem 4.9. Let ( , , , ) be the classical structure for position eigenstates. Then the monoid
( , ) endows the set {|χn〉 |n ∈ Z2ω+1} of momentum eigenstates with the abelian group structure of
momentum-space translation (Z2ω+1,⊕,0).

χn⊕m
1√
L

=

χn
1√
L

χm
1√
L

(4.15)

Dually to Theorem 4.6, we refer to this fact by saying that positions generate momentum-space trans-
lations. In particular, the subset of standard momentum eigenstates {|χn〉 |n ∈ Z} is endowed with the
abelian group structure of (Z,+,0).
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Similarly to the momentum observable, the position observable is given by a family (Qx)x of or-
thogonal non-standard projectors on L2[R/(LZ)] indexed by the set of positions {x | x ∈ R/(LZ)}, where
the projectors are 1-dimensional and defined by Qx := L

2ω+1 |δx〉〈δx|. The following theorem relates this
definition to the CQM one in terms of classical structures.
Theorem 4.10. The position observable can be obtained from the comultiplication of the classical
structure for position eigenstates, as follows:

Qx '
δx

√
L√

2ω+1
(4.16)

Also, the rescaled counit
√

L defines the integral operator:
√

L | f̄ 〉= 〈χ0| f̄ 〉=
∫

R/(LZ) f (x)dx.
Finally, in the finite-dimensional case it is known [7] that strong complementarity [4, 9] corresponds

to the Weyl canonical commutation relations, so we expect the classical structures for momentum and
position eigenstates to be strongly complementary. This is indeed the case.
Theorem 4.11. The classical structures for momentum and position eigenstates form a strongly comple-
mentary pair of unital commutative †-Frobenius algebras:

= = = (4.17)

Equivalently, they are canonically commuting in the sense of the Weyl CCRs (see below for more details):

χn
1√
L

δx
√

L =

δx
√

L

χn
1√
L

χn(x) (4.18)

Traditionally, the Weyl CCRs take the following form:

exp
[
i(2π/L)x

p
h̄

]
· exp

[
i(2π/L)

p
h̄

x
]
= ei(2π/L)x p

h̄ exp
[
i(2π/L)

p
h̄

x
]
· exp

[
i(2π/L)x

p
h̄

]
, (4.19)

However, the traditional formulation requires the position and momentum observables to be given in
the self-adjoint form of infinitesimal generators. When observables are given by complete families of
orthogonal projectors, a different form is required: contrary to the differential formulation of the CCRs in
terms of commutators, the Weyl CCRs are easily adapted to this alternative notion of observable:[

∑
m

ei( 2π

L )mx|χm〉〈χm|
]
·
[∫

ei( 2π

L )ny|δy〉〈δy|dy
]
= e−i( 2π

L )nx
[∫

ei( 2π

L )ny|δy〉〈δy|dy
]
·
[
∑
m

ei( 2π

L )mx|χm〉〈χm|
]

The Weyl CCRs in this new form are exactly those given by Equation 4.18 (once we write them down
linearly, in semi-rigorous notation).

In this section, we have seen how the traditional ingredients of quantum mechanics for wavefunctions
on L2[R/(LZ)] find a natural place in the structures of infinite-dimensional categorical quantum mechanics.
The methods presented here can be extended to the case of wavefunctions on spaces with a compact or
discrete abelian group of translations (such as tori or lattices). A detailed treatment is left to future work.
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5 Conclusions
Using tools from non-standard analysis, we have constructed a new category ?Hilb. This category extends
Hilbert spaces and bounded linear maps in a suitable sense, and contains all the structures required to
do categorical quantum mechanics in separable Hilbert spaces (such as unital commutative †-Frobenius
algebras and dagger compact structure). As a sample application, we have covered the textbook case
of a 1-dimensional wavefunction with periodic boundary condition: the same principles that govern
observables in finite dimensions also allow us to obtain the usual (unbounded) position and momentum
observables. The work presented here is only the beginning of what promises to be a long and exciting
venture, but it already provides evidence that the same abstract methods that have made the framework so
successful throughout the last decade can be extended to infinite dimensions, with little modification. We
are confident that further developments will help close the gap between the categorical framework and the
formalism needs of the practising quantum physicist.

Our non-standard extension of categorical quantum mechanics is successful, but it comes at a cost:
the very objects that contribute to the extension – unbounded operators, Dirac deltas, plane-waves and
infinitesimal probabilities – are in direct contrast with the purportedly finite / continuous nature of concrete
physical experience. To this point, our approach is mainly a pragmatic one, rather than a foundational
one: we have chosen to meet the flexibility required by everyday practice of quantum mechanics with the
rigour of categorical constructions. To those who believe that plane-waves and Dirac deltas have physical
significance, ?Hilb may represent physical reality better than Hilb; to those who don’t, it provides a space
where common mathematical “tricks” turn out to be well-defined. There certainly is a deeply interesting
story behind the divergences of unbounded operators and Dirac deltas, but we leave that for another
day. Today, we chose to extend the reach of categorical and diagrammatic methods to the (separable)
infinite-dimensional world that most quantum physics takes place in. We hope you enjoyed the ride.
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A The structure of non-standard spaces

The non-standard naturals ?N form a totally ordered semiring. As a totally ordered set, they are order-
isomorphic to N+ θ ×Z, with N as an initial segment and θ a dense order with no maximum nor
minimum. We say that two non-standard naturals n,m have the same order of infinity if they differ by
a finite natural |n−m| ∈ N. This gives an equivalence relation, and the set of equivalence classes is
in order-preserving bijection with the totally ordered set Θ+ := {0}+θ . The set Θ+ also inherits the
additive monoid structure of ?N. However, Θ+ does not inherit the full semiring structure.

The non-standard integers ?Z form a totally ordered ring, with ?N as a sub-semiring and Z as a
subring. As a totally ordered set, they are order-isomorphic to (θ +{0}+θ)×Z: they contain the finite
integers together two copies of the infinite naturals, one above all finite integers and one below all finite
integers. The set Θ := θ + {0}+ θ of orders of infinity for ?Z again inherits the total order and the
additive group structure, but not the ring one.

The non-standard reals form a totally ordered field, with ?Z as a subring and R as a subfield. By
using the finite integers Z ⊂ ?Z ⊂ ?R, it is possible to define the sub-ring M0 of finite reals, given by
those x ∈ ?R such that ∃ n ∈ Z |x|< n (in fact, they form a R-vector space). By using the standard reals,
it is possible to define the sub-ring M1 of infinitesimals (in fact, a M0-module), given by those ξ ∈ ?R
such that ∀x ∈ R+

\{0} |ξ |< x: every non-standard real x is surrounded by a coset of M1, called the monad
of x, and the quotient ring M0/M1 (M1 is only a sub-ring of ?R, but it is a two-sided ideal for M0) is
isomorphic to R (the quotient is referred to as taking the standard part of a finite real x ∈ M0). The
non-standard reals contain infinitesimals and infinites, and are therefore non-Archimedean. However, they
are Archimedean in a non-standard sense: by transfer theorem, for any x ∈ ?R there is a unique n ∈ ?N
such that n ≤ |x| < n+ 1. Similarly, for every infinitesimal ξ ∈M1 there is a unique n ∈ ?N such that
1/(n+ 1) < ξ ≤ 1/n, and as a consequence the non-standard rationals ?Q are a dense subfield of ?R.
Thus the non-standard reals can be obtained in a familiar way, by “gluing” a copy of the non-standard unit
interval between any two consecutive non-standard integers: as a totally ordered additive group, they are
isomorphic to Θ×M0. The non-standard complex numbers ?C also form a field, with both ?R and C as
sub-fields. As an additive group, they are isomorphic to ?R2. We will transfer most notations from ?R to
?C, when no confusion can arise.

The passage from standard to non-standard models has a two-fold effect on (complex) Hilbert spaces:
(i) the scalars change from C to ?C; (ii) the vectors change from sequences (an)n∈N+ indexed by the
standard naturals to sequences (an)n∈?N+ indexed by the non-standard naturals. Each standard Hilbert
space V has a non-standard counterpart ?V , containing V as a C-linear (but not ?C-linear) subspace
of standard vectors. The non-standard space ?V comes with a ?C-valued inner product (extending the
standard one on V ), and an associated ?R+-valued norm. The vectors infinitesimally close to standard
vectors are called near-standard, and form a C-linear (and M0-linear) subspace ?V0 of ?V ; the quotient on
?V0 by ' gives rise to a C-linear map st( ) : ?V0→V , generalising the standard part on ?C. The vectors
of infinitesimal norm are called infinitesimal vectors, and form a C-linear (and M0-linear) subspace ?V1.

The vectors of finite norm, called finite vectors, also form a C-linear (and M0-linear) subspace, but
here is where the second effect of non-standard analysis comes into play: there exist finite vectors, such as

1√
κ

∑
κ
n=1 |en〉, which are not near-standard. This is what makes the non-standard approach to quantum

mechanics so powerful: in ?R and ?C finite numbers are all near-standard, and correspond to standard
numbers under infinitesimal equivalence, while in a non-standard Hilbert space one has genuinely new
finite vectors which don’t correspond to standard vectors, such as normalised plane-waves in L2[Z] and
Dirac-deltas in L2[R/(LZ)]. These new vectors are the building blocks of our approach.
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B Proofs

B.1 Proofs from Section 3.1

Proof of associativity for the tensor product In order to show that the tensor product defined by
Equation (3.6) is associative, all we have to show is that the following two bijections {1, ...,κ} ×
{1, ...,ν}×{1, ...,λ}→ {1, ...,κνλ} coincide:

(n,m, l) 7→ ςκν ,λ

(
ςκ,ν(n,m), l

)
(n,m, l) 7→ ςκ,νλ

(
n,ςν ,λ (m, l)

)
(B.1)

This is a simple matter of non-standard algebra:

ςκν ,λ

(
ςκ,ν(n,m), l

)
=
((

(n−1)ν +m
)
−1
)

λ + l =

= (n−1)νλ +
(
(m−1)λ + l

)
= ςκ,νλ

(
n,ςν ,λ (m, l)

)
(B.2)

�
B.2 Proofs from Section 3.2

Proof of Lemma 3.2. (i) implies (ii): let ζ := 〈ξκ |ξκ〉 be an infinitesimal; then we have 〈ξκ |F̄†F̄ |ξκ〉 ≤
ζ ||F̄ ||op, which is infinitesimal since ||F̄ ||op is finite. (ii) implies (i): if ||F̄ ||op is infinite, then for
some |ψκ〉 of unit norm we have 〈ψκ |F̄†F̄ |ψκ〉 = θ infinite; but then 〈ψκ | 1√

θ
F̄†F̄ 1√

θ
|ψκ〉 = 1 is not

infinitesimal, with 1√
θ
|ψκ〉 infinitesimal. (ii) equivalent to (iii): by linearity of F̄ . �

Proof of Lemma 3.3 Bi-linearity of composition and tensor product, together with the triangle inequality,
imply that the only statements we need to prove are the following:

||Ḡ ·ξκ ||op infinitesimal whenever Ḡ continuous and ξκ infinitesimal;

||ζκ · F̄ ||op infinitesimal whenever F̄ continuous and ||ζκ ||op infinitesimal;

||Ḡ⊗ξκ ||op infinitesimal whenever Ḡ continuous and ||ξκ ||op infinitesimal. (B.3)

The first statement follows from the fact that ||Ḡξκ ||op ≤ ||Ḡ||op||ξκ ||op, which is infinitesimal because
||Ḡ||op is finite. The second statement goes similarly. The third statement is slightly trickier. Let |ψκ〉 be
unit norm, and write |ψκ〉= ∑n |φ

(n)
κ 〉|en〉 (where (|en〉)n is the chosen orthonormal basis for the domain

of ξκ ). Then we have the following

〈ψκ |(Ḡ⊗ξκ)
†(Ḡ⊗ξκ)|ψκ〉 ≤∑

n′
∑
n
〈φ (n)

κ |φ
(n)
κ 〉||Ḡ||op|(ξκ)n′n|2 ≤ ||Ḡ||op||ξκ ||op, (B.4)

where the last product is infinitesimal because ||Ḡ||op is finite. �

Existence and uniqueness of definition of st(F̄) By definition, if F̄ is near-standard, at least one
standard bounded linear map f ′ exists such that F̄ ∼ f̄ ′. Now take two such standard bounded linear maps
f ′ and f ′′: by transitivity we get that f ′ ∼ f ′′, i.e. that || f̄ ′− f̄ ′′||op is infinitesimal; define g := f ′− f ′′,
standard bounded linear map. By transfer theorem (both directions),

√
〈ψ|g†g|ψ〉 is bounded above (by a

standard constant c ∈ R+, for all standard |ψ〉 satisfying 〈ψ|ψ〉= 1), if and only if
√
〈ψ|g†g|ψ〉 is also

bounded above (by the same standard constant c, for all internal |ψ〉 such that 〈ψ|ψ〉= 1). Because g
is standard and bounded,

√
〈ψ|g†g|ψ〉 and

√
〈ψ|ḡ†ḡ|ψ〉 are infinitesimally close: as a consequence, if

|| f̄ ′− f̄ ′′||op is infinitesimal, then it is bounded above by all standard reals c > 0, and hence by transfer
theorem so is || f ′− f ′′||op. This proves that || f ′− f ′′||op = 0, and we conclude that f ′ = f ′′. �
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Choice of orthonormal bases for trunc[ ]ω Up to equivalence of categories, we can consider sHilb
as having objects given by all finite (possibly empty) tensor products of the following basic objects:
the finite-dimensional Hilbert spaces Cp for all primes p, and the separable space `2[N+]. Choose any
orthonormal basis for each of the basic objects; denote them by |e(p)

n 〉pn=1 and |e(∞)
n 〉∞n=1. On basic objects,

define trunc[Cp]ω := (Cp, |e(p)
n 〉pn=1) and trunc[`2[N+]]ω := (`2[N+], |e(∞)

n 〉ωn=1). Extend the definition to
finite tensor products by using the tensor product of ?Hilb (or, equivalently, by using the bijection ς from
Equation (3.5) to explicitly construct a basis). �

Proof that f 7→ f̄ is an injection Let f ,g be standard bounded linear maps, defined by matrices
(anm)n,m∈N+ and (bnm)n,m∈N+ respectively. The matrices can be extended by transfer theorem to non-
standard indices, and f̄ and ḡ have matrices (anm)

κν

ς(n,m)=1 and (bnm)
κν

ς(n,m)=1. If f̄ = ḡ, then we have that
(anm)

κν

ς(n,m)=1 = (bnm)
κν

ς(n,m)=1 as matrices, and in particular anm = bnm for all n,m ∈ N+, proving that
f = g in the first place.

Weak functoriality of trunc[ ]ω We begin by covering weak functoriality of trunc[ ]ω , as it makes an
interesting point by itself. Note that trunc[g]ω · trunc[ f ]ω = PG ◦g◦PH ◦ f ◦PK , and that trunc[g · f ] =
PG ◦g◦ f ◦PK . In the infinite-dimensional case, if f ,g are standard bounded linear maps, then the standard
series aln := ∑

∞
m=0 glm fmn converges for all fixed l,n, and the non-standard complex number ∑

κ
m=0 glm fmn

is infinitesimally close to the standard complex number aln. Hence g ◦PH ◦ g ∼ g ◦ f , when seen as
internal morphisms of non-standard Hilbert spaces. In the finite-dimensional case, there is no issue of
truncation, and trunc[ ]ω is strictly functorial. �

Proof of Theorem 3.4

(i) The map st( ) is well-defined and monoidally functorial by Lemma 3.3. It is full by the proof of
existence/uniqueness given above, and surjective on objects by construction of ?Hilb and sHilb.

(ii) The map trunc[ ]ω is weakly functorial by the argument given at the beginning of this proof
(strictly functorial when restricted to fdHilb), and monoidally so by Lemma 3.3 and the choice of
orthonormal bases presented above. Faithfulness was proven above (by showing that f 7→ f̄ is an
injection), and essential surjectivity follows from point (v) below.

(iii) We know from above that trunc[ ]ω is faithful, i.e. that f 7→ f̄ is an injection. If f is a standard
bounded linear map, then the morphism st(trunc[ f ]ω) of sHilb is the unique standard bounded
linear map which is infinitesimally close (in operator norm) to f̄ , i.e. it is f itself.

(iv) By definition of the two functors.

(v) By (iii), one such standard unitary ūH exists, namely by taking u := idH . Uniqueness follows
because any such unitary must be infinitesimally close to the standard unitary ūH define above, and
at most one such standard linear map exists.

(vi) The morphism ū†
G trunc[st(F̄)]ω ūH is infinitesimally close to its image under st( ), which is st(F̄)

by points (iii) and (v) above. Similarly, F̄ is infinitesimally close to its image under st( ), which is
also st(F̄). We conclude by transitivity/symmetry of ∼.

�
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B.3 Proofs from Section 4.1

Proof of Theorem 4.3 Associativity and Frobenius laws hold with strict equalities (not up to ∼, despite
involving composition of standard bounded linear maps), exactly as shown in [2]. Commutativity also
holds with strict equality. The only things left to check are a Unit law and the Speciality law.

= (idH ⊗
κ

∑
m=1
〈 fm|) ·

κ

∑
n=1
| fn〉⊗ | fn〉 〈 fn| ∼

∼
κ

∑
m=1

κ

∑
n=1
| fn〉〈 fm| fn〉〈 fn|=

κ

∑
n=1
| fn〉〈 fn| ∼

(B.5)

= (
κ

∑
m=1
| fm〉 〈 fm|⊗ 〈 fm|) · (

κ

∑
n=1
| fn〉| fn〉〈 fn|)∼

∼
κ

∑
m=1

κ

∑
n=1
| fm〉〈 fm| fn〉2〈 fn|=

κ

∑
n=1
| fn〉〈 fn| ∼

(B.6)

Finally, if | fn〉n is the chosen orthonormal basis |en〉n for H , then the ∼ in the previous equations are in
fact =, and the classical structure is a strictly unital, strictly special commutative †-Frobenius algebra12.
�

Proof of Theorem 4.4 Weak yanking equations follow from the Frobenius law and weak Unit laws of
any classical structure in ?Hilb. When the classical structure is that of the chosen orthonormal basis, the
strict Unit laws result in strict yanking equations, yielding legitimate cups and caps (again because of the
exact resolution of the identity into idH = ∑

κ
n=1 | fn〉〈 fn|). �

B.4 Proofs from Section 4.2

Proof of Theorem 4.5 The proof that the state |δx0〉 satisfies 〈δx0 | f 〉 ' f (0) for all standard smooth
f ∈ L2[R/LZ] hinges on the transfer theorem, together with the following standard result from Fourier
theory:

1√
L

N

∑
n=−N

e−i(2π/L)x0n 1√
L
〈χn| f 〉=

1
L

∫
R/LZ

( N

∑
n=−N

ei(2π/L)(x−x0)n
)

f (x)dx N→∞−→ f (x0). (B.7)

To show orthogonality, we consider | f 〉 := ∑
M
m=−M

( 1
L ei(2π/L)x1m

)
|χm〉 for some x1 6= x0. This isn’t a

smooth function, so the result we just obtained cannot be applied to it; however, a similar reasoning (this
time with two limits and two applications of the transfer theorem) yields the desired result:

1√
L

N

∑
n=−N

1√
L

M

∑
m=−M

(
e−i(2π/L)x0n 1√

L

)
〈χn|χm〉

(
ei(2π/L)x1m 1√

L

)
=

=
1
L2

∫
R/LZ

( N

∑
n=−N

M

∑
m=−M

ei(2π/L)
(
(x−x0)n+(x−x1)m

))
dx

N,M→∞−→ 0. (B.8)

Finally, the position eigenstates are clearly unbiased for the momentum eigentstates: by the first part of
this proof, any given position eigenstate |δx0〉 satisfies |〈δx0 |χn〉|2 ' 1 for all momentum eigenstates |χn〉,
independently of n. �

12The ∼ become = because the identity takes the exact form idH = ∑
κ
n=1 | fn〉〈 fn|, rather than the approximate form

idH ∼ ∑
κ
n=1 | fn〉〈 fn|, when | fn〉κn=1 is the chosen ort’l basis.
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Proof of Theorem 4.6 Using the definition of the classical structure for momentum eigenstates, together
with the definition of the position eigenstates, we obtain the desired equalities:

· (
√

L|δx〉
√

L|δy〉) =
[ 1
√

L
3

+ω

∑
n=−ω

|χn〉〈χn|〈χn|
]√

L|δx〉
√

L|δy〉=
[ 1
√

L
2

+ω

∑
n=−ω

χn(x)?|χn〉〈χn|
]√

L|δy〉=

=
1√
L

+ω

∑
n=−ω

χn(x)?χn(y)?|χn〉=
1√
L

+ω

∑
n=−ω

χn(x⊕ y)?|χn〉=
√

L|δx⊕y〉. (B.9)

�
Proof of Theorem 4.8 Commutative, Associative and Unit laws can be proven on the monoid using the
corresponding laws for (⊕,0). Frobenius law follows from the following re-indexing, with k′ := k⊕n:

( ⊗ id) · (id⊗ ) =
1
√

L
4

+ω

∑
n=−ω

+ω

∑
m=−ω

[
∑

k⊕h=m
|χn⊕k〉⊗ |χh〉 〈χn|⊗ 〈χm|

]
=

=
1
√

L
4

+ω

∑
n=−ω

+ω

∑
m=−ω

[
∑

k′⊕h=n⊕m
|χk′〉⊗ |χh〉 〈χn|⊗ 〈χm|

]
= · (B.10)

Finally, the algebra is quasi-special, with normalisation factor (2ω +1):

· =
1
√

L
2

+ω

∑
n=−ω

|χn〉
(

∑
k⊕h=n

1
√

L
2 〈χk|χk〉

1
√

L
2 〈χh|χh〉

)
〈χn|=

=
1
√

L
2

+ω

∑
n=−ω

(
2ω +1

)
〈χn|= (2ω +1)id. (B.11)

The fact that position eigenstates are copied is a straightforward check, with a re-indexing n′ := n	 k in
the second-to-last step:

·
√

L|δx〉=
1
√

L
2

+ω

∑
n=−ω

+ω

∑
k=−ω

|χk〉⊗ |χn	k〉 〈χn|δx〉=

=
1
√

L
2

+ω

∑
n=−ω

+ω

∑
k=−ω

|χk〉⊗ |χn	k〉 χn(x)? =

=
1
√

L
2

+ω

∑
n=−ω

+ω

∑
k=−ω

|χk〉⊗ |χn	k〉 χk(x)?χn	k(x)? =

=
[ 1√

L

+ω

∑
n′=−ω

χn′(x)?|χn′〉
]
⊗
[ 1√

L

+ω

∑
k=−ω

χk(x)?|χk〉
]
=

=
√

L|δx〉⊗
√

L|δx〉. (B.12)

�

A first connection between complementarity and the uncertainty principle Mutual unbias, also
known as complementarity, is sufficient to provide a first, rough approximation of the position/momentum
uncertainty principle: it can be used to show that measuring any state first in the position observable
and then in the momentum observable (or vice versa) always yields the totally mixed state. We sketch
an informal, non-diagrammatic proof here, and leave a rigorous one (which uses Hopf law in the CPM
category CPM[?Hilb]) to future work on the topic.
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If one measures a pure state |ψ〉 in the position observable, one obtains a mixture ρ of position
eigenstates: ρ :=

∫
S1 Qx|ψ〉〈ψ|Q†

x dx =
∫

S1 |ψ(x)|2 |δx〉〈δx| dx. If one then measures the mixture ρ

in the momentum observable, one obtains a new mixture ρ ′ given as follows:ρ ′ := ∑
+ω
n=−ω Pnh̄ρP†

nh̄ =

∑
+ω
n=−ω

∫
S1 |ψ(x)|2 Pnh̄|δx〉〈δx|P†

nh̄ dx. But ρ is a classical mixture of position eigenstates, and mutual
unbias alone is sufficient to conclude that ρ ′ is the totally mixed state. �

Proof of Theorem 4.10 The projector Qx is meant to send a standard state | f̄ 〉 of L2[R/(LZ)] to
f (x) times the (normalised) position eigenstate

√
L√

2ω+1
|δx〉 (times a normalisation factor making Qx

idempotent). We expand a standard f in the orthonormal basis of (normalised) momentum eigenstates as
| f̄ 〉= ∑

+ω
n=−ω f̄n

1√
L
|χn〉, and we get:(

id⊗
√

L√
2ω +1

〈δx|
)
· · | f 〉=

√
L√

2ω +1

+ω

∑
n=−ω

ω

∑
k=−ω

1
√

L
2 |χk〉〈δx|χn	k〉 f̄n =

=

√
L√

2ω +1

+ω

∑
n=−ω

ω

∑
k=−ω

1
√

L
2 |χk〉χn	k(x) f̄n =

=

√
L√

2ω +1

[ ω

∑
k=−ω

1√
L

χk(x)?|χk〉
] 1√

L

+ω

∑
n=−ω

χn(x) f̄n =

=

√
L√

2ω +1
|δx〉

√
L√

2ω +1

[ 1√
L

+ω

∑
n=−ω

χn(x)
1
√

L
2 〈χn|χn〉 f̄n

]
=

=

√
L√

2ω +1
|δx〉

√
L√

2ω +1
〈δx| f̄ 〉 '

√
L√

2ω +1

[
f (x)

√
L√

2ω +1
|δx〉
]
.

(B.13)

�

Proof of Theorem 4.11 Evaluating on momentum eigenstates, the three equations in (4.17) are equiva-
lent to the following equations, which are immediate to check:( 1√

L
|χn⊕m〉⊗

1√
L
|χn⊕m〉

)
=

1√
L
|χn⊕m〉

1√
L
|χ0〉= (

1√
L
|χ0〉⊗

1√
L
|χ0〉)

√
L

1√
L
〈δ0|χn⊕m〉=

√
L

2 1
√

L
2 〈δ0|χn〉〈δ0|χm〉 (B.14)

Equation (4.18) follows from strong complementarity, as shown in [7]:

χn
1√
L

δx
√

L

=

χn
1√
L

δx
√

L

=

δx
√

L

χn
1√
L

δx

χn
(B.15)

�
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